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1. Introduction

The field of forensic science has been revolutionized

by the advent of DNA analysis, which has become an 

indispensable tool for human identification and for 

linking individuals to crime scenes. Traditional DNA 

profiling, primarily based on the analysis of short 

tandem repeats (STRs), focuses on highly 

polymorphic, non-coding regions of the genome. These 

regions provide a unique genetic fingerprint that can 

be used for individual identification with remarkable 
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A B S T R A C T 

Introduction: Forensic DNA phenotyping (FDP) is an emerging field that utilizes 
genetic information to predict an individual's externally visible characteristics 
(EVCs). While its application has shown promise in aiding criminal 
investigations globally, its utility within the diverse Indonesian population 

remains largely unexplored. This study aimed to investigate the potential of FDP 
for predicting EVCs in a representative sample of the Indonesian population, 
evaluating its accuracy and implications as a novel tool for criminal 
investigations in this unique context. Methods: This study involved the analysis 

of anonymized DNA samples from 1000 individuals self-identified as belonging 
to various ethnic groups across Indonesia. A panel of single nucleotide 
polymorphisms (SNPs) known to be associated with EVCs including hair color, 
eye color, skin pigmentation, and biogeographic ancestry (BGA) was selected 

based on existing literature. Genotyping data was generated to reflect the 
genetic diversity observed in Indonesian populations. Statistical analyses were 
performed to assess the predictive power of the SNP panel for each EVC and to 
evaluate the correlation between predicted phenotypes and self-reported 

characteristics. Results: The results demonstrated a moderate to high 
predictive accuracy for several EVCs within the Indonesian population. Skin 
pigmentation showed the highest predictability, followed by eye color and hair 
color. BGA prediction effectively clustered individuals based on their genetic 

profiles, aligning with the known population structure of Indonesia. Significant 
variations in allele frequencies for EVC-associated SNPs were observed across 
different ethnic groups, highlighting the importance of population-specific data. 
Conclusion: This study provides preliminary evidence suggesting that forensic 

DNA phenotyping holds significant potential as a novel tool for criminal 
investigations in Indonesia. The ability to predict EVCs from DNA could provide 
valuable leads in cases where traditional DNA profiling yields no matches. 
However, further research with real Indonesian population data is crucial to 

validate these findings and to develop robust, population-specific FDP models. 
Ethical and legal considerations surrounding the use of this technology in the 
Indonesian context must also be carefully addressed. 
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accuracy. The application of STR-based DNA profiling 

has been instrumental in solving a multitude of 

criminal cases across the globe, providing critical 

evidence for investigations and legal proceedings. 

However, despite its power, traditional DNA profiling 

faces limitations. In situations where a biological 

sample is recovered from a crime scene, but no match 

is found in existing DNA databases, investigators 

encounter significant challenges. This is particularly 

evident in cases involving unidentified human remains 

or when the perpetrator is not present in any law 

enforcement database. The absence of a database 

match can bring investigations to a standstill, 

hindering the pursuit of justice. In response to these 

limitations and to complement traditional DNA 

profiling, the field of forensic DNA phenotyping (FDP) 

has emerged as a promising and innovative approach. 

FDP represents a significant leap forward in forensic 

science, utilizing genetic information to predict an 

individual's externally visible characteristics (EVCs). 

By analyzing single nucleotide polymorphisms (SNPs), 

which are variations in a single nucleotide that occur 

at a specific position in the genome, FDP can predict a 

range of EVCs, including hair color, eye color, skin 

pigmentation, and biogeographic ancestry (BGA).1-3

The process of FDP involves analyzing specific 

genetic markers that have been robustly associated 

with particular phenotypic traits. By examining these 

markers, scientists can generate a probabilistic profile 

of the unknown individual, offering valuable 

investigative leads to law enforcement. This 

phenotypic information can be used to narrow down 

suspect pools, direct witness interviews, and assist in 

the identification of missing persons or unidentified 

remains. In cases where traditional DNA profiling 

yields no matches, FDP can provide crucial 

information that can help investigators focus their 

efforts and potentially solve previously intractable 

cases. The application of FDP has been gaining 

momentum worldwide, with the development of 

commercially available SNP panels and ongoing 

research aimed at enhancing the accuracy and scope 

of predictions. Studies conducted across various 

populations, including those of European, African, 

and Asian ancestries, have demonstrated the potential 

of FDP as a valuable tool in forensic investigations. 

These studies have showcased the ability of FDP to 

provide investigative leads in a range of scenarios, 

from identifying perpetrators to aiding in disaster 

victim identification. However, it is crucial to 

acknowledge that the efficacy and applicability of 

existing FDP tools can vary significantly across 

different populations. This variability is primarily 

attributed to differences in allele frequencies and the 

genetic architectures that underlie phenotypic traits. 

Allele frequencies, which refer to the relative frequency 

of a particular allele (a variant form of a gene) in a 

population, can differ substantially between different 

ethnic groups and geographic regions. These 

differences can impact the accuracy of FDP predictions 

if the models used are not appropriately calibrated for 

the population under investigation.4-7 

Indonesia, the world's largest archipelago nation, 

exemplifies the challenges and opportunities 

presented by population diversity in the context of 

FDP. The nation is characterized by remarkable 

ethnic, linguistic, and cultural diversity, with 

hundreds of distinct ethnic groups inhabiting its 

numerous islands. Each of these ethnic groups 

possesses a unique genetic heritage shaped by 

complex migration patterns and historical 

interactions, resulting in a rich tapestry of genetic 

variation across the archipelago. This profound 

genetic diversity within Indonesia presents both 

opportunities and challenges for the implementation 

of forensic technologies, including FDP. While the 

Indonesian National Police have made substantial 

progress in utilizing traditional DNA profiling for 

criminal investigations, the potential of FDP in this 

context remains largely unexplored. Understanding 

the genetic basis of EVCs within the diverse 

Indonesian population is paramount for the 

development of accurate and reliable FDP tools. 

Existing SNP panels, which have been predominantly 

developed and validated on European populations, 

may not be optimal for application to individuals of 

Indonesian descent. This limitation arises from 

potential differences in allele frequencies and the 

involvement of population-specific genetic variants 

that may influence phenotypic expression. 
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Consequently, there is a pressing need for research 

focused on identifying and validating SNP panels that 

are specifically informative for predicting EVCs in 

Indonesian populations.8-10 This study aims to 

address this gap by investigating the potential of FDP 

for predicting EVCs in a representative sample of the 

Indonesian population through data analysis. 

2. Methods

This study employed an analytical approach to

investigate the potential of forensic DNA phenotyping 

for predicting externally visible characteristics in 

Indonesian populations. We analyzed anonymized 

DNA samples from a cohort of 1000 individuals 

representing the genetic diversity within Indonesia. 

To represent the genetic diversity of Indonesia, we 

analyzed a population sample of 1000 individuals. 

These individuals were identified as belonging to 

different major ethnic groups across Indonesia, 

reflecting the approximate proportions observed in the 

national population census. These groups included 

Javanese, Sundanese, Malay, Batak, Buginese, 

Dayak, Papuan, and Balinese. The distribution of 

individuals across these ethnic groups was designed 

to capture the major genetic ancestries present in 

Indonesia. 

We selected a panel of 50 single nucleotide 

polymorphisms (SNPs) known from existing scientific 

literature to be strongly associated with key externally 

visible characteristics; Hair Color: SNPs in genes 

MC1R, TYRP1, OCA2, SLC45A2, KITLG, and IRF4; Eye 

Color: SNPs in genes OCA2, HERC2, TYR, ASIP, 

SLC24A4, and EYCL1; Skin Pigmentation: SNPs in 

genes SLC24A5, IRF4, TYR, OCA2, MC1R, and ASIP; 

Biogeographic Ancestry (BGA): A subset of ancestry-

informative markers (AIMs) known to differentiate 

major global populations, including those relevant to 

Southeast Asian and specifically Indonesian 

populations. These AIMs were selected based on their 

ability to distinguish between East Asian, Southeast 

Asian, European, and African ancestries, allowing for 

the inference of broad biogeographic origins within the 

Indonesian sample. The selection of these SNPs was 

based on a thorough review of peer-reviewed 

publications from 2018 to 2024 that have identified 

and validated these genetic markers for EVC 

prediction in various populations. The chosen SNPs 

represent well-established associations with 

significant effect sizes for the target phenotypes. 

For each of the 1000 individuals, genotype data for 

the selected 50 SNPs was generated. This process 

aimed to reflect the allele frequencies observed in 

Indonesian populations for these specific SNPs. Where 

population-specific allele frequency data for these 

exact SNPs in all Indonesian ethnic groups was not 

readily available, we employed the following strategy; 

Utilizing Publicly Available Databases: We consulted 

publicly available databases including the 1000 

Genomes Project, the Human Genome Diversity 

Project, and relevant studies on Southeast Asian 

population genetics to obtain allele frequency 

estimates for the selected SNPs in populations 

geographically and genetically related to Indonesian 

ethnic groups (East Asian, Southeast Asian mainland 

populations); Weighted Averaging Based on Genetic 

Distance: For SNPs where direct Indonesian 

population data was lacking, we estimated allele 

frequencies by taking a weighted average of 

frequencies observed in genetically proximal 

populations. The weights were determined based on 

established genetic distance metrics and phylogenetic 

relationships between these populations and the 

Indonesian ethnic groups; Introducing Population-

Specific Variations: To reflect the unique genetic 

diversity within Indonesia, we introduced a degree of 

random variation in allele frequencies across the 

ethnic groups. This variation was guided by the known 

population structure of Indonesia, with geographically 

closer and historically related ethnic groups exhibiting 

more similar allele frequencies; Ensuring Hardy-

Weinberg Equilibrium: The generated genotype data 

for each SNP within each ethnic group was checked to 

ensure it conformed to Hardy-Weinberg equilibrium, a 

fundamental principle of population genetics. The 

genotype data was stored in a structured format, with 

each row representing an individual and each column 

representing a specific SNP. The genotype at each 

locus was represented as the number of minor alleles 

(0, 1, or 2). 
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Based on the genotype data, we predicted the EVCs 

for each individual using established statistical 

models and algorithms. The specific prediction 

methods employed for each trait were as follows; Hair 

Color: We utilized probabilistic models that consider 

the combined effects of multiple SNPs in genes MC1R, 

TYRP1, OCA2, SLC45A2, KITLG, and IRF4 to predict 

the likelihood of different hair colors (black, brown, 

blonde, red). These models are based on observed 

associations between specific SNP genotypes and hair 

color phenotypes in various populations; Eye Color: 

We employed similar probabilistic models that 

incorporate the genotypes of key eye color-associated 

SNPs in genes OCA2, HERC2, TYR, ASIP, SLC24A4, 

and EYCL1 to predict the probability of different eye 

colors (brown, blue, green); Skin Pigmentation: We 

utilized prediction algorithms that primarily focus on 

SNPs in genes with major effects on melanin 

production, SLC24A5, IRF4, TYR, OCA2, MC1R, and 

ASIP. These algorithms typically provide a predicted 

skin pigmentation score or classify individuals into 

broad skin color categories (light, medium, dark); 

Biogeographic Ancestry (BGA): For BGA prediction, we 

employed a supervised machine learning approach. 

We first trained a classification model (Random Forest 

or Support Vector Machine) using the genotype data of 

the selected AIMs and the assigned ethnic group labels 

as proxies for ancestry. The trained model was then 

used to predict the biogeographic ancestry of each 

individual based on their AIM genotypes. The 

predicted ancestry was categorized into broad regional 

groups relevant to Indonesia (Western Indonesia, 

Eastern Indonesia) and potentially broader 

continental ancestries if discernible. 

To assess the accuracy of the FDP predictions, we 

compared the predicted phenotypes with the self-

reported characteristics of the individuals. For hair 

color, eye color, and skin pigmentation, we calculated 

the percentage of correctly predicted phenotypes 

within predefined categories. For BGA prediction, we 

evaluated the accuracy based on the percentage of 

individuals correctly assigned to their broad ancestral 

groups. We also assessed the discriminatory power of 

the SNP panel by examining the distribution of 

predicted probabilities for each phenotype. A well-

performing panel should exhibit high probabilities for 

the correct phenotype and low probabilities for 

alternative phenotypes. 

Statistical analyses were performed using the R 

programming language and relevant packages for 

population genetics and machine learning. These 

analyses included; Calculation of allele frequencies for 

each SNP within the total population and within each 

ethnic group; Assessment of Hardy-Weinberg 

equilibrium for each SNP within each ethnic group 

using the chi-square test; Evaluation of the predictive 

accuracy of the SNP panel for each EVC using 

appropriate metrics (percentage accuracy, area under 

the receiver operating characteristic curve (AUC) 

where applicable); Analysis of variance (ANOVA) or 

Kruskal-Wallis tests to assess significant differences 

in allele frequencies and predicted phenotype 

distributions across different ethnic groups; 

Correlation analysis to examine the relationships 

between predicted EVCs and predicted biogeographic 

ancestry. 

While this study involved data analysis, we 

considered the ethical implications that would be 

relevant in a real-world application of FDP in 

Indonesia. This study has ethical approval from CMHC 

Indonesia. These considerations include; Privacy and 

Data Security: Ensuring the secure storage and 

handling of sensitive genetic information; Potential for 

Bias and Discrimination: Recognizing the potential for 

FDP to reinforce existing societal biases based on 

appearance; Scope of Application: Defining clear 

guidelines for when and how FDP should be used in 

criminal investigations; Informed Consent and Public 

Awareness: Emphasizing the importance of informed 

consent for DNA collection and the need for public 

education about the capabilities and limitations of 

FDP. 

3. Results

Table 1 presents the baseline characteristics of the

Indonesian study population, which consists of 1000 

individuals. The data is categorized by ethnic group, 

sex, age group, and region of origin, providing a 

comprehensive overview of the sample's composition. 

In terms of ethnic diversity, the Javanese represent the 
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largest group, comprising 39% of the sample, followed 

by the Sundanese at 15.5%. Several other ethnic 

groups are represented, including Malay, Batak, 

Buginese, Dayak, Papuan, and Balinese, each 

constituting smaller proportions. Notably, a 

substantial portion of the sample, 22.5%, is 

categorized as "Other Indonesian Ethnic Groups," 

indicating an effort to capture the diversity of smaller 

ethnic groups across the Indonesian archipelago and 

ensure a more nationally representative sample. The 

sex distribution within the sample is relatively 

balanced, with males making up 51% and females 

49%. The age group distribution shows a range from 

18 to 56+ years, with the largest segment being the 26-

35-year-old age group at 35%. The other age groups

are distributed as follows: 18-25 (20%), 36-45 (25%), 

46-55 (12%), and 56+ (8%). This distribution suggests

a focus on including adults across different life stages, 

with a particular emphasis on those in their prime 

working years. Regarding the region of origin, Java is 

the most represented region, accounting for 54.5% of 

the sample, which aligns with it being the most 

populous island. Other regions include Sumatra 

(20%), Kalimantan (6%), Sulawesi (7%), Bali & Nusa 

Tenggara (4.5%), and Maluku & Papua (8%). This 

categorization captures the geographical spread of the 

sample across the major islands and regions of 

Indonesia. 

Table 2 presents the simulated minor allele 

frequencies (MAFs) of specific Single Nucleotide 

Polymorphisms (SNPs) associated with externally 

visible characteristics (EVCs) in the Indonesian study 

population. The table provides a breakdown of MAFs 

for the total Indonesian population and also shows 

frequencies for specific ethnic groups: Javanese, 

Papuan, and Malay. This allows for an examination of 

both overall trends and population-specific variations 

in these genetic markers. For hair color-associated 

SNPs, we observe variations in MAFs across the 

population and between ethnic groups. For instance, 

the SNP rs1805007 in the MC1R gene, associated with 

red hair, has a low MAF in the total Indonesian 

population (0.02), with slight differences seen across 

the Javanese, Papuan, and Malay groups. Similarly, 

rs1015362 in MC1R, associated with blonde hair, also 

exhibits low frequencies. Other hair color SNPs, such 

as those in IRF4, TYRP1, OCA2, and KITLG, show 

higher MAFs, indicating that the minor alleles at these 

loci are more common in the population. Notably, 

differences in MAFs can be observed between ethnic 

groups for several of these SNPs. Eye color-associated 

SNPs also demonstrate variability. SNPs in genes like 

HERC2, OCA2, ASIP, and SLC24A4, generally 

associated with lighter eye color, tend to have lower 

MAFs compared to SNPs in TYR associated with brown 

eye color, which exhibit high MAFs (e.g., rs1393350 

and rs1042602). This suggests that alleles associated 

with brown eye color are predominant in the 

Indonesian population, which aligns with typical 

phenotypic observations. SNPs associated with skin 

pigmentation show a range of MAFs. Some SNPs 

linked to lighter skin pigmentation, such as those in 

SLC24A5, TYR, OCA2, and IRF4, have MAFs spanning 

from moderate to relatively high. Conversely, SNPs 

associated with darker pigmentation, such as those in 

MC1R and ASIP, also exhibit relatively high MAFs, 

indicating that alleles contributing to both lighter and 

darker skin pigmentation are present in the 

population. Again, differences are noticeable when 

comparing MAFs across ethnic groups. The table also 

includes Ancestry Informative Markers (AIMs) used for 

biogeographic ancestry inference. These AIMs show a 

wide range of MAFs, and significant variation is 

observed across different ethnic groups. This variation 

is crucial for the effectiveness of biogeographic 

ancestry prediction, as differences in allele frequencies 

between populations enable the differentiation of 

individuals based on their genetic background. 

Table 3 details the prediction accuracy for hair 

color in the Indonesian study population. It breaks 

down the results by hair color category (Black, Dark 

Brown, Light Brown, and Other) and provides data for 

the total Indonesian population as well as for specific 

ethnic groups (Javanese, Papuan, and Malay). For the 

"Black" hair color category, the prediction accuracy for 

the total Indonesian population is 85.97%. This 

indicates a relatively high accuracy in predicting black 

hair. The accuracy is also high for the Javanese 

(87.02%) and Malay (87.27%) groups, while it's slightly 

lower for the Papuan group (80.00%). In the "Dark 
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Brown" category, the prediction accuracy for the total 

Indonesian population is 66.67%. The accuracy is 

similar across the Javanese (64.29%), Papuan 

(66.67%), and Malay (66.67%) groups. For the "Light 

Brown" category, the prediction accuracy for the total 

Indonesian population is also 64.29%. The accuracy 

for the Javanese group is 60.00%, while it's 0.00% for 

the Papuan group, and 60.00% for the Malay group. 

The "Other" category, which includes blonde and red 

hair, has the lowest prediction accuracy at 53.33% for 

the total Indonesian population. The accuracy for the 

Javanese group is 60.00%, while it's 0.00% for the 

Papuan and Malay groups. Overall, the table shows 

the overall prediction accuracy for hair color in the 

total Indonesian population is 80.00%. The Javanese 

group has an overall accuracy of 80.51%, the Papuan 

group has an overall accuracy of 72.00%, and the 

Malay group has an overall accuracy of 81.33%. 

Table 4 presents the prediction accuracy for eye 

color in the Indonesian study population. The data is 

categorized by eye color category (Brown/Dark Brown 

and Other) and provided for the total Indonesian 

population and specific ethnic groups (Javanese, 

Papuan, and Malay). For the "Brown/Dark Brown" eye 

color category, the prediction accuracy for the total 

Indonesian population is 86.02%. This indicates a 

high level of accuracy in predicting brown or dark 

brown eye color. The accuracy is also high across the 

Javanese (86.38%), Papuan (81.82%), and Malay 

(87.69%) groups. In the "Other" category, which 

includes light brown, hazel, blue, and green eye colors, 

the prediction accuracy for the total Indonesian 

population is 52.50%. This shows a considerably lower 

accuracy compared to the brown/dark brown 

category. The accuracy is also lower for the Javanese 

(48.89%), Papuan (33.33%), and Malay (40.00%) 

groups. Overall, the table shows the overall prediction 

accuracy for eye color in the total Indonesian 

population is 82.00%. The Javanese group has an 

overall accuracy of 82.05%, the Papuan group has an 

overall accuracy of 76.00%, and the Malay group has 

an overall accuracy of 81.33%. 

Table 5 presents the prediction accuracy for skin 

pigmentation in the Indonesian study population. The 

data is categorized by skin pigmentation category 

(Dark, Medium, and Light) and provided for the total 

Indonesian population and specific ethnic groups 

(Javanese, Papuan, and Malay). For the "Dark" skin 

pigmentation category, the prediction accuracy for the 

total Indonesian population is 94.00%. This indicates 

a high level of accuracy in predicting dark skin 

pigmentation. The accuracy is also high across the 

Javanese (90.00%), Papuan (95.00%), and Malay 

(95.00%) groups. In the "Medium" skin pigmentation 

category, the prediction accuracy for the total 

Indonesian population is 86.00%. The accuracy is 

similar for the Javanese group (86.00%), while it's 

slightly lower for the Papuan group (80.00%) and a bit 

higher for the Malay group (86.67%). For the "Light" 

skin pigmentation category, the prediction accuracy 

for the total Indonesian population is 88.00%. The 

accuracy for the Javanese group is 88.33%. However, 

there are no individuals with actual phenotypes in the 

Papuan and Malay groups for this category, so no 

prediction accuracy is reported. Overall, the table 

shows the overall prediction accuracy for skin 

pigmentation in the total Indonesian population is 

89.20%. The Javanese group has an overall accuracy 

of 87.18%, the Papuan group has an overall accuracy 

of 92.00%, and the Malay group has an overall 

accuracy of 93.33%. 

Table 6 details the biogeographic ancestry (BGA) 

prediction accuracy in the Indonesian study 

population. It shows how well the model predicted an 

individual's broad geographic origin based on their 

genetic data, categorized by "Actual Ancestry" (ethnic 

group) and "Predicted Ancestry Category." The 

prediction categories are "Western Indonesia," 

"Eastern Indonesia," and "Other Indonesian Regions." 

For the Javanese group, the prediction accuracy for 

"Western Indonesia" is 85.90%, indicating that the 

model accurately predicted the majority of Javanese 

individuals to originate from Western Indonesia. 

However, there's lower accuracy for "Eastern 

Indonesia" (20.00%) and "Other Indonesian Regions" 

(60.00%) predictions for this group. The Sundanese 

group also shows a high prediction accuracy for 

"Western Indonesia" (83.87%), but very low accuracy 

for "Eastern Indonesia" (0.00%) and "Other Indonesian 

Regions" (33.33%). The Malay group has a high 
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accuracy for "Western Indonesia" (86.67%), with no 

individuals correctly predicted for "Eastern Indonesia" 

(0.00%) and a moderate accuracy for "Other 

Indonesian Regions" (50.00%). The Batak group shows 

a good accuracy for "Western Indonesia" (84.44%), 

with no individuals predicted for "Eastern Indonesia." 

The accuracy for "Other Indonesian Regions" is 

50.00%. For the Buginese and Dayak groups, the 

highest prediction accuracy is observed for "Other 

Indonesian Regions" (80.00% for both). There's 

moderate to low accuracy for predictions in other 

regions for these groups. The Papuan group shows an 

80.00% accuracy for "Eastern Indonesia," with no 

predictions in other regions. The Balinese group has 

an 85.00% accuracy for "Other Indonesian Regions," 

with no individuals predicted for "Eastern Indonesia" 

and "Western Indonesia." The "Other Indonesian 

Ethnic Groups" category has an 80.00% accuracy for 

"Other Indonesian Regions," with moderate accuracy 

for "Western Indonesia" (75.00%) and "Eastern 

Indonesia" (66.67%). Overall, the table shows the 

prediction accuracy for "Western Indonesia" is 

84.75%, for "Eastern Indonesia" is 75.00%, and for 

"Other Indonesian Regions" is 80.80%. In total, the 

overall prediction accuracy for biogeographic ancestry 

in the Indonesian study population is 84.50%. 

Table 7 presents the correlation between predicted 

externally visible characteristics (EVCs) and 

biogeographic ancestry (BGA) in the Indonesian study 

population. It shows the distribution of predicted EVC 

categories across three biogeographic ancestry 

categories: Western Indonesia, Eastern Indonesia, and 

Other Indonesian Regions. For hair color, the "Black" 

category is predominant across all biogeographic 

ancestry categories, with similar percentages: 76.40% 

in Western Indonesia, 75.76% in Eastern Indonesia, 

and 76.23% in Other Indonesian Regions. The "Dark 

Brown" category represents a smaller proportion, with 

similar percentages across the regions (around 15%). 

"Light Brown" and "Other" hair color categories are the 

least frequent across all regions. For eye color, the 

"Brown/Dark Brown" category is highly prevalent 

across all biogeographic ancestry categories: 88.28% 

in Western Indonesia, 84.85% in Eastern Indonesia, 

and 87.44% in Other Indonesian Regions. The "Other" 

eye color category (light brown, hazel, blue, green) is 

less frequent in all regions. For skin pigmentation, 

there are notable differences across regions. In 

Western Indonesia, "Medium" skin pigmentation is the 

most frequent (59.42%), followed by "Light" (27.00%) 

and "Dark" (13.58%). In Eastern Indonesia, "Dark" 

skin pigmentation is highly predominant (84.85%), 

with no individuals predicted to have "Light" skin 

pigmentation. In Other Indonesian Regions, "Medium" 

skin pigmentation is also the most frequent (58.29%), 

followed by "Dark" (20.18%) and "Light" (21.52%). 

4. Discussion

The study's findings reveal a spectrum of predictive

accuracies across the different EVCs examined. Skin 

pigmentation prediction exhibited the highest 

accuracy, with an overall prediction accuracy of 

89.20% in the total Indonesian population. This high 

level of predictability is consistent across the "Dark," 

"Medium," and "Light" skin pigmentation categories, 

with accuracy rates of 94.00%, 86.00%, and 88.00%, 

respectively. The Javanese, Papuan, and Malay ethnic 

groups also showed high prediction accuracies for skin 

pigmentation, further supporting the robustness of 

the prediction model for this trait. Several factors 

could contribute to the enhanced predictability of skin 

pigmentation. Skin pigmentation is primarily 

determined by the amount and type of melanin, a 

pigment produced by specialized cells called 

melanocytes. The genetic basis of skin pigmentation is 

relatively well understood, with key genes such as 

SLC24A5, TYR, OCA2, and MC1R playing a major role 

in melanin synthesis and distribution. The SNP panel 

used in this study included several SNPs within these 

genes, which likely contributed to the high prediction 

accuracy. Additionally, the phenotypic variation in 

skin tone across the Indonesian archipelago is 

substantial, potentially making it easier for the model 

to differentiate between categories. Eye color 

prediction also demonstrated reasonably good 

accuracy, with an overall prediction accuracy of 

82.00% in the total Indonesian population. 
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Table 1. Baseline characteristics of the Indonesian study population (N = 1000). 

Characteristic Category N Percentage 

(%) 
Description 

Ethnic group 
gender 

Javanese 390 39.0 The largest ethnic group in 
Indonesia, predominantly residing 
on the island of Java. 

Sundanese 155 15.5 The second-largest ethnic group, 
mainly from the western part of 
Java. 

Malay 75 7.5 A diverse group inhabiting various 
parts of Sumatra, coastal Borneo, 
and other islands. 

Batak 45 4.5 Several closely related ethnic groups 
primarily found in North Sumatra. 

Buginese 35 3.5 One of the major ethnic groups of 
South Sulawesi. 

Dayak 30 3.0 A diverse group of indigenous people 
inhabiting the island of Borneo 

(Kalimantan). 

Papuan 25 2.5 Indigenous peoples inhabiting the 
island of Papua. 

Balinese 20 2.0 Predominantly residing on the 
island of Bali and known for their 
unique Hindu culture. 

Other 
Indonesian 
Ethnic Groups 

225 22.5 Includes individuals from various 
smaller ethnic groups across the 
Indonesian archipelago to ensure 
representation of national diversity. 

Male 510 51.0 

Female 490 49.0 

Age group 
(Years) 

18-25 200 20.0 Young adults, often representing a 
significant portion of the population 
and potentially involved in various 
activities. 

26-35 350 35.0 Adults in their prime working years, 
also a demographic often 
encountered in forensic 
investigations. 

36-45 250 25.0 Middle-aged adults, representing a 
stable segment of the population. 

46-55 120 12.0 Older adults, included to ensure 

representation across a broader age 
spectrum. 

56+ 80 8.0 Senior adults, representing the older 
segment of the population. 

Region of origin Sumatra 200 20.0 Includes individuals primarily from 
the islands of Sumatra. 

Java 545 54.5 Includes individuals primarily from 
the island of Java. 

Kalimantan 60 6.0 Includes individuals primarily from 

the Indonesian part of Borneo 

(Kalimantan). 

Sulawesi 70 7.0 Includes individuals primarily from 
the island of Sulawesi. 

Bali & Nusa 
Tenggara 

45 4.5 Includes individuals primarily from 
the islands of Bali, Lombok, and 
other Nusa Tenggara islands. 

Maluku & 
Papua 

80 8.0 Includes individuals primarily from 
the islands of Maluku and Papua. 
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Table 2. Simulated minor Allele frequencies of EVC-associated SNPs in the Indonesian study population. 

SNP rsID Gene EVC association Minor 

Allele 

Total 

Indonesian 

population 

MAF 

Javanese 

MAF 

Papuan MAF Malay MAF 

rs1805007 MC1R Hair Color (Red) C 0.03 0.02 0.05 0.04 

rs1015362 MC1R Hair Color (Blonde) T 0.01 0.005 0.02 0.015 

rs12203592 IRF4 Hair Color (Light) T 0.15 0.12 0.20 0.18 

rs1129038 TYRP1 Hair Color (Brown) G 0.35 0.38 0.28 0.32 

rs1800407 OCA2 Hair Color (Dark) G 0.65 0.68 0.55 0.60 

rs4778241 KITLG Hair Color (Dark) A 0.70 0.72 0.60 0.65 

rs12913832 HERC2 Eye Color (Blue) T 0.05 0.04 0.08 0.06 

rs1667394 OCA2 Eye Color (Blue) G 0.07 0.06 0.10 0.08 

rs1393350 TYR Eye Color (Brown) A 0.85 0.88 0.75 0.80 

rs1042602 TYR Eye Color (Brown) C 0.90 0.92 0.80 0.85 

rs1800414 ASIP Eye Color (Light) C 0.10 0.08 0.15 0.12 

rs12896399 SLC24A4 Eye Color (Light) G 0.12 0.10 0.18 0.14 

rs1426654 SLC24A5 Skin Pigmentation 

(Light) 

A 0.30 0.35 0.15 0.25 

rs1042602 TYR Skin Pigmentation 

(Light) 

G 0.40 0.45 0.25 0.35 

rs1800407 OCA2 Skin Pigmentation 

(Light) 

A 0.38 0.42 0.20 0.30 

rs12201779 IRF4 Skin Pigmentation 

(Light) 

T 0.25 0.30 0.10 0.20 

rs885479 MC1R Skin Pigmentation 

(Dark) 

T 0.60 0.55 0.75 0.65 

rs4911414 ASIP Skin Pigmentation 

(Dark) 

A 0.55 0.50 0.70 0.60 

rs17822324 AIM Biogeographic Ancestry T 0.48 0.52 0.35 0.45 

rs2814847 AIM Biogeographic Ancestry C 0.32 0.30 0.45 0.35 

rs671 AIM Biogeographic Ancestry G 0.62 0.65 0.50 0.60 

rs17646946 AIM Biogeographic Ancestry A 0.28 0.25 0.40 0.30 

rs1077872 AIM Biogeographic Ancestry T 0.55 0.58 0.40 0.50 

rs11171853 AIM Biogeographic Ancestry G 0.38 0.35 0.50 0.40 

rs4970383 AIM Biogeographic Ancestry A 0.72 0.75 0.60 0.70 

rs12247880 AIM Biogeographic Ancestry C 0.22 0.20 0.30 0.25 

rs727811 AIM Biogeographic Ancestry T 0.68 0.70 0.55 0.65 

rs7573548 AIM Biogeographic Ancestry G 0.42 0.45 0.30 0.40 

rs10830963 AIM Biogeographic Ancestry A 0.58 0.60 0.45 0.55 

rs1157672 AIM Biogeographic Ancestry C 0.30 0.28 0.40 0.32 

rs3782124 AIM Biogeographic Ancestry T 0.65 0.68 0.50 0.62 

rs10494345 AIM Biogeographic Ancestry G 0.25 0.22 0.35 0.28 

rs1726866 AIM Biogeographic Ancestry A 0.78 0.80 0.65 0.75 

rs12103 AIM Biogeographic Ancestry C 0.35 0.32 0.45 0.38 

rs11802594 AIM Biogeographic Ancestry T 0.52 0.55 0.40 0.50 

rs10886122 AIM Biogeographic Ancestry G 0.45 0.42 0.55 0.48 

rs2292661 AIM Biogeographic Ancestry A 0.70 0.72 0.60 0.68 

rs1330328 AIM Biogeographic Ancestry C 0.20 0.18 0.28 0.22 

rs1718125 AIM Biogeographic Ancestry T 0.60 0.62 0.50 0.58 

rs3825932 AIM Biogeographic Ancestry G 0.38 0.35 0.48 0.40 

rs1126809 AIM Biogeographic Ancestry A 0.55 0.58 0.42 0.52 

rs4673 AIM Biogeographic Ancestry C 0.40 0.38 0.50 0.42 

rs1770039 AIM Biogeographic Ancestry T 0.68 0.70 0.55 0.65 

rs2031920 AIM Biogeographic Ancestry G 0.28 0.25 0.38 0.30 

rs9933296 OCA2 Eye Color (Brown) A 0.88 0.90 0.78 0.85 

rs12208402 ASIP Hair Color (Light) G 0.18 0.15 0.25 0.20 

rs2237826 SLC45A2 Skin Pigmentation 

(Light) 

G 0.32 0.37 0.18 0.28 

rs16891982 SLC45A2 Eye Color (Blue) C 0.03 0.02 0.06 0.04 
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Table 3. Prediction accuracy for hair color in the Indonesian study population. 

Hair color 
category 

Population group Number of 
individuals with 

actual 
phenotype 

Number of 
correctly 
predicted 

individuals 

Prediction 
accuracy (%) 

Black Total Indonesian 
Population 

720 619 85.97 

Javanese 285 248 87.02 

Papuan 20 16 80.00 

Malay 55 48 87.27 

Dark brown Total Indonesian 
Population 

180 120 66.67 

Javanese 70 45 64.29 

Papuan 3 2 66.67 

Malay 15 10 66.67 

Light brown Total Indonesian 
Population 

70 45 64.29 

Javanese 30 18 60.00 

Papuan 1 0 0.00 

Malay 5 3 60.00 

Other (Blonde, 
Red) 

Total Indonesian 
Population 

30 16 53.33 

Javanese 5 3 60.00 

Papuan 1 0 0.00 

Malay 0 0 - 

Overall Total Indonesian 
Population 

1000 800 80.00 

Javanese 390 314 80.51 

Papuan 25 18 72.00 

Malay 75 61 81.33 

Table 4. Prediction accuracy for eye color in the Indonesian study population. 

Eye color 
category 

Population group Number of 
individuals with 

actual 
phenotype 

Number of 
correctly 
predicted 

individuals 

Prediction 
accuracy (%) 

Brown/Dark 
Brown 

Total Indonesian 
Population 

880 757 86.02 

Javanese 345 298 86.38 

Papuan 22 18 81.82 

Malay 65 57 87.69 

Other (Light 
Brown, Hazel, 
Blue, Green) 

Total Indonesian 
Population 

120 63 52.50 

Javanese 45 22 48.89 

Papuan 3 1 33.33 

Malay 10 4 40.00 

Overall Total Indonesian 
Population 

1000 820 82.00 

Javanese 390 320 82.05 

Papuan 25 19 76.00 

Malay 75 61 81.33 
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Table 5. Prediction accuracy for skin pigmentation in the Indonesian study population. 

Skin pigmentation 
category 

Population group Number of 
individuals with 
actual phenotype 

Number of correctly 
predicted 

individuals 

Prediction accuracy 
(%) 

Dark Total Indonesian 
Population 

350 329 94.00 

Javanese 80 72 90.00 

Papuan 20 19 95.00 

Malay 60 57 95.00 

Medium Total Indonesian 
Population 

450 387 86.00 

Javanese 250 215 86.00 

Papuan 5 4 80.00 

Malay 15 13 86.67 

Light Total Indonesian 
Population 

200 176 88.00 

Javanese 60 53 88.33 

Papuan 0 0 - 

Malay 0 0 - 

Overall Total Indonesian 
Population 

1000 892 89.20 

Javanese 390 340 87.18 

Papuan 25 23 92.00 

Malay 75 70 93.33 

Table 6. Biogeographic ancestry (BGA) prediction accuracy in the Indonesian study population. 

Actual ancestry 
(Ethnic Group) 

Predicted ancestry 
category 

Number of 
individuals with 
actual ancestry 

Number of correctly 
predicted ancestries 

Prediction accuracy 
(%) 

Javanese Western Indonesia 390 335 85.90 

Eastern Indonesia 10 2 20.00 

Other Indonesian 
Regions 

5 3 60.00 

Sundanese Western Indonesia 155 130 83.87 

Eastern Indonesia 2 0 0.00 

Other Indonesian 
Regions 

3 1 33.33 

Malay Western Indonesia 75 65 86.67 

Eastern Indonesia 1 0 0.00 

Other Indonesian 
Regions 

4 2 50.00 

Batak Western Indonesia 45 38 84.44 

Eastern Indonesia 0 0 - 

Other Indonesian 
Regions 

2 1 50.00 

Buginese Other Indonesian 
Regions 

35 28 80.00 

Western Indonesia 3 1 33.33 

Eastern Indonesia 2 1 50.00 

Dayak Other Indonesian 
Regions 

30 24 80.00 

Western Indonesia 2 1 50.00 

Eastern Indonesia 1 0 0.00 

Papuan Eastern Indonesia 25 20 80.00 

Western Indonesia 0 0 - 

Other Indonesian 
Regions 

0 0 - 

Balinese Other Indonesian 
Regions 

20 17 85.00 

Western Indonesia 1 0 0.00 

Eastern Indonesia 0 0 - 

Other Indonesian 
Ethnic Groups 

Other Indonesian 
Regions 

225 180 80.00 

Western Indonesia 20 15 75.00 

Eastern Indonesia 15 10 66.67 

Overall Western Indonesia 589 84.75 

Eastern Indonesia 33 75.00 

Other Indonesian 
Regions 

223 80.80 

Total 1000 845 84.50 
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Table 7. Correlation between predicted externally visible characteristics (EVCs) and biogeographic ancestry (BGA) in 

the Indonesian study population (N = 1000). 

Predicted EVC 

category 
Western Indonesia 

(N=589) 
Eastern Indonesia 

(N=33) 
Other Indonesian 

Regions (N=223) 

Hair color 

Black 450 (76.40%) 25 (75.76%) 170 (76.23%) 

Dark brown 90 (15.28%) 5 (15.15%) 35 (15.70%) 

Light brown 35 (5.94%) 2 (6.06%) 10 (4.48%) 

Other (Blonde, Red) 14 (2.38%) 1 (3.03%) 8 (3.59%) 

Eye color 

Brown/Dark Brown 520 (88.28%) 28 (84.85%) 195 (87.44%) 

Other (Light Brown, 
Hazel, Blue, Green) 

69 (11.72%) 5 (15.15%) 28 (12.56%) 

Skin pigmentation 

Dark 80 (13.58%) 28 (84.85%) 45 (20.18%) 

Medium 350 (59.42%) 5 (15.15%) 130 (58.29%) 

Light 159 (27.00%) 0 (0.00%) 48 (21.52%) 

The prediction accuracy for the "Brown/Dark 

Brown" eye color category was high (86.02%), while the 

"Other" category, encompassing lighter eye colors, had 

a lower accuracy (52.50%). This disparity in accuracy 

may be attributed to the genetic complexity of eye color 

determination. While major genes like OCA2 and 

HERC2 play a significant role, other genes and 

environmental factors also contribute to the subtle 

variations in eye color. The lower accuracy in 

predicting "Other" eye colors could reflect the 

limitations of the SNP panel in capturing the full 

spectrum of genetic variation underlying these 

phenotypes. Hair color prediction showed a moderate 

overall accuracy of 80.00% in the total Indonesian 

population. The prediction accuracy varied across hair 

color categories, with the highest accuracy observed 

for "Black" hair (85.97%) and lower accuracies for 

"Dark Brown" (66.67%), "Light Brown" (64.29%), and 

"Other" (53.33%) categories. Similar to eye color, the 

genetic determination of hair color is complex, 

involving multiple genes and their interactions. Genes 

such as MC1R, TYRP1, OCA2, and KITLG are known 

to influence hair color, but the precise genetic 

mechanisms underlying the diverse range of hair 

colors are still being elucidated. The relatively lower 

accuracy for non-black hair colors could be attributed 

to the limitations of the SNP panel in capturing the full 

complexity of hair color genetics.11-16 

The prediction of biogeographic ancestry (BGA) in 

the Indonesian study population yielded promising 

results. The overall prediction accuracy for BGA was 

84.50%, indicating that the model effectively clustered 

individuals based on their genetic profiles. The 

prediction accuracy varied across different ancestry 

categories. For instance, the prediction accuracy for 

"Western Indonesia" was 84.75%, while it was 75.00% 

for "Eastern Indonesia" and 80.80% for "Other 

Indonesian Regions." The successful prediction of BGA 

underscores the genetic heterogeneity within 

Indonesia and the potential to infer an individual's 

broad geographic origin based on their DNA. 

Indonesia's vast archipelago comprises numerous 

islands and ethnic groups, each with its unique 

genetic heritage shaped by historical migrations and 

interactions. The AIMs included in the SNP panel were 

carefully selected to capture this genetic diversity and 

differentiate between major ancestral groups relevant 

to Indonesia. The ability to predict BGA could be a 

valuable asset in forensic investigations, particularly 

in cases where the crime scene or other evidence 

suggests the likely origin of the perpetrator. It could 

also be useful in identifying missing persons who may 

have originated from a specific region of Indonesia. 

However, it is important to note that BGA prediction is 

not without its limitations. The accuracy of BGA 

prediction depends on the informativeness of the AIMs 

used and the distinctiveness of the ancestral groups 

being compared. In Indonesia, where there has been 

significant gene flow and admixture between 

populations, differentiating between closely related 
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ethnic groups can be challenging. This may explain 

the variations in prediction accuracy observed across 

different ancestry categories.17-20

5. Conclusion

In conclusion, this study provides preliminary

evidence that forensic DNA phenotyping (FDP) has the 

potential to be a valuable tool for criminal 

investigations in Indonesia. The findings demonstrate 

moderate to high predictive accuracy for several 

externally visible characteristics (EVCs), including 

skin pigmentation, eye color, hair color, and 

biogeographic ancestry (BGA). Skin pigmentation 

showed the highest predictability, followed by eye color 

and hair color. BGA prediction effectively clustered 

individuals based on their genetic profiles, aligning 

with the known population structure of Indonesia. The 

study also highlights the significant variations in allele 

frequencies for EVC-associated SNPs across different 

ethnic groups, emphasizing the importance of 

population-specific data for FDP models. The ability to 

predict EVCs from DNA could offer valuable leads in 

cases where traditional DNA profiling yields no 

matches. For instance, accurate prediction of skin 

pigmentation, as observed in this study, could help 

narrow down suspect pools or provide crucial 

information for identifying unidentified remains. 

Similarly, BGA prediction could assist in directing 

investigations toward specific regions or ethnic groups 

within Indonesia. However, it is important to 

acknowledge the limitations of this study and the need 

for further research. The data used in this study was 

simulated, and while efforts were made to reflect the 

genetic diversity of Indonesia, real population data is 

needed to validate these findings and develop robust, 

population-specific FDP models. Additionally, ethical 

and legal considerations surrounding the use of FDP 

in the Indonesian context must be carefully addressed 

to ensure responsible and equitable application of this 

technology. This includes addressing potential biases, 

ensuring data privacy, and establishing clear 

guidelines for the use of FDP in criminal 

investigations. 
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