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1. Introduction 

The operational scope of forensic genetics is 

undergoing a paradigm shift, expanding from its 

traditional role in identity confirmation to the 

generation of actionable investigative intelligence from 

unknown biological samples.1 Within this evolving 

landscape of Forensic DNA Phenotyping (FDP), the 

ability to accurately predict an individual's 
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A B S T R A C T  

Introduction: The capacity to predict an individual's age from biological evidence 
constitutes a significant advancement in forensic intelligence. DNA methylation, a 
stable epigenetic mark, provides a molecular basis for "epigenetic clocks." However, 
the operational reliability of these clocks necessitates rigorous validation across 
diverse biological samples and populations, particularly for challenging, low-template 
touch DNA evidence. Methods: Following approval from the Ethical Committee of 
CMHC Indonesia (No. 128/EC/CMHC/2023), we recruited 150 healthy Indonesian 
male volunteers aged 18-65. Semen, saliva, and high-yield standardized touch DNA 
samples were collected. DNA was extracted, quantified fluorometrically, and 
subjected to bisulfite conversion with efficiency controls. The methylation levels of a 
curated five-CpG panel (ELOVL2, FHL2, TRIM59, KCNQ1DN, C1orf132) were 
quantified using a rigorously controlled pyrosequencing workflow. Body-fluid-specific 
age prediction models were developed using multiple linear regression, validated with 
10-fold cross-validation, and assessed for statistical assumptions including 
multicollinearity. Results: The models for semen and saliva demonstrated high 
predictive accuracy, yielding Mean Absolute Deviation (MAD) values of 3.19 years 
(R²=0.94) and 3.55 years (R²=0.92), respectively. The model developed from high-yield 
touch DNA was less precise but still highly informative, with a MAD of 5.49 years 
(R²=0.85). All models satisfied the assumptions of linear regression, with Variance 
Inflation Factors below 2.5 indicating low multicollinearity. The 95% prediction 
intervals were narrowest for semen, reflecting its superior precision. Conclusion: 
This study validates a robust, targeted epigenetic panel for age prediction in a 

Southeast Asian population. We present highly accurate, tissue-specific models for 
semen and saliva, suitable for immediate consideration in forensic casework. The 
touch DNA model, while requiring cautious interpretation, provides a valuable 
framework for generating investigative leads from trace evidence. Our findings 
underscore the critical importance of tissue-specific modeling and provide a detailed 
methodological and statistical blueprint for the responsible implementation of 
forensic age estimation. 
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chronological age represents one of the most 

transformative capabilities for law enforcement and 

human identification efforts. An age estimate can 

refine suspect pools, guide investigative direction in 

"no-suspect" cases, corroborate or refute witness 

statements, and provide critical information for 

identifying victims of mass casualty events.2 Unlike 

categorical traits such as eye or hair color, age is a 

continuous variable, and its prediction requires robust 

statistical models that can capture the subtle, 

progressive molecular changes that occur throughout 

the human lifespan. The search for a reliable 

molecular chronometer has led researchers through 

investigations of telomere attrition and somatic 

rearrangements, yet these have been largely 

supplanted by the field of epigenetics. DNA 

methylation, the addition of a methyl group to cytosine 

bases, has emerged as the foundation of the most 

promising "epigenetic clocks." This epigenetic 

modification is biochemically stable in forensic 

samples and changes in a predictable, systematic 

manner with age at specific CpG dinucleotides 

throughout the genome.3 These changes are not 

merely random decay; they represent a complex 

interplay between programmed developmental 

processes and stochastic cellular damage, making the 

epigenome a living record of an individual's journey 

through time.4 

The development of epigenetic clocks has 

progressed through several generations. Initial 

landmark studies demonstrated the concept using 

genome-wide microarrays to build powerful pan-tissue 

and tissue-specific models, often involving hundreds 

of CpG sites.5 While scientifically groundbreaking, 

these "first-generation" clocks are ill-suited for routine 

forensic casework due to high cost, significant DNA 

input requirements, and complex data analysis. This 

has driven the field towards the development of 

targeted assays, which represent a more pragmatic 

"second-generation" approach. These assays focus on 

a small, curated panel of the most informative CpG 

sites, analyzed using sensitive and quantitatively 

precise techniques like bisulfite pyrosequencing.6 This 

strategy strikes a critical balance, optimizing for 

predictive accuracy while adhering to the forensic 

constraints of limited sample material, degraded DNA, 

and the need for cost-effective, high-throughput 

workflows. The selection of markers for such a 

targeted panel is a crucial design consideration. A 

robust panel should be built not just on markers with 

the strongest individual correlation to age, but on a 

combination that provides a holistic and buffered 

signal. This study focuses on a curated five-marker 

panel designed to achieve this balance. The panel is 

anchored by a CpG site in elongation of very long chain 

fatty acids 2 (ELOVL2), a locus whose methylation 

status has an exceptionally strong and widely 

validated linear correlation with age across numerous 

tissues and populations.7 To complement this primary 

predictor, we included markers in genes with diverse 

functions: FHL2 (a signaling adapter), TRIM59 

(involved in cell cycle regulation), KCNQ1DN (a 

potassium channel-related gene), and C1orf132 (a 

gene of less-defined function). This multi-locus 

approach is designed to be resilient to anomalous 

methylation at any single site and to capture a more 

integrated signal of systemic aging. 

Despite promising results in the literature, two 

significant gaps hinder the widespread, responsible 

implementation of this technology. The first is the 

issue of tissue specificity. Most models are developed 

on blood or saliva, yet casework involves a spectrum 

of biological materials. Semen, a critical evidence type 

in sexual assault investigations, has a unique cellular 

and epigenetic composition.8 Touch DNA, the low-

template material left on handled objects, represents 

the ultimate forensic challenge due to its minimal 

quantity, potential for degradation, and complex 

cellular makeup. Applying a model built on one tissue 

to another without rigorous comparative validation is 

scientifically unsound and risks generating 

dangerously misleading investigative leads. 

The second gap is population-specific validation. 

Epigenetic patterns, including the rate of epigenetic 

aging, can be influenced by genetic ancestry and 

environmental factors.9 Validating these tools in 

diverse global populations is therefore not merely an 

academic exercise but an ethical and scientific 

necessity. This is particularly true for the genetically 

diverse populations of Southeast Asia, for whom 
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forensic epigenetic data remains sparse. The novelty of 

this research is threefold. First, it provides a direct, 

simultaneous, and methodologically rigorous 

comparison of age prediction accuracy across three 

forensically vital and biologically distinct matrices: 

semen, saliva, and high-yield standardized touch 

DNA. Second, it develops and validates a specific five-

marker age prediction tool in a well-characterized 

cohort of Indonesian males, providing crucial data for 

this under-represented Southeast Asian population. 

Third, it moves beyond a simple report of accuracy by 

incorporating a detailed analysis of the statistical 

models and a deep, critical discussion of the biological 

mechanisms and practical implementation 

challenges.10 Therefore, the primary aims of this study 

were To provide a transparent and reproducible 

methodology for quantifying DNA methylation at five 

age-associated CpG sites (ELOVL2, FHL2, TRIM59, 

KCNQ1DN, and C1orf132); To develop and rigorously 

validate—using cross-validation and assessment of 

statistical assumptions—three separate, body-fluid-

specific age prediction models for semen, saliva, and 

touch DNA; To critically evaluate and compare the 

performance of these models, grounding the observed 

differences in accuracy in the known pathophysiology 

and unique biological characteristics of each sample 

type; To establish a foundational framework for the 

responsible operational implementation of this 

technology, including a discussion of reporting 

practices and limitations. 

 

2. Methods 

This study was conducted in strict compliance with 

the principles of the Declaration of Helsinki. The 

research protocol, including all recruitment, consent, 

and sampling procedures, was reviewed and approved 

by the Ethical Committee of CMHC Indonesia (No. 

128/EC/CMHC/2023). A cohort of 150 male 

volunteers was recruited between January and June 

2024 from Palembang, South Sumatra, Indonesia. 

Recruitment occurred through public notices at 

university campuses and local community centers, 

representing a convenience sampling strategy. To 

characterize the cohort and assess potential 

confounding variables, all participants completed a 

detailed, anonymized questionnaire. Data collected 

included age, self-declared ethnicity (all participants 

identified as native to South Sumatra), occupation, 

and key lifestyle factors including smoking status 

(never-smoker, former smoker, current smoker with 

pack-years), and weekly alcohol consumption. 

Exclusion criteria were: age outside the 18-65 year 

range, a history of cancer or autoimmune disease, 

current use of medications known to significantly 

impact DNA methylation, and blood transfusion within 

the previous six months. All participants provided 

written informed consent prior to enrollment. 

Chronological age was verified against a government-

issued identification card. 

For each volunteer, three biological samples were 

collected under controlled conditions. Saliva: 

Participants abstained from eating, drinking, and 

smoking for 30 minutes, then provided approximately 

2 mL of whole saliva via passive drooling into a sterile 

tube containing 2 mL of a DNA stabilization buffer 

(DNA Genotek). Samples were inverted to mix and 

stored at ambient temperature as per the 

manufacturer's protocol. Semen: Participants were 

provided with sterile, wide-mouthed polypropylene 

containers for sample collection via masturbation in a 

private facility. Samples were processed within one 

hour of collection. Standardized Touch DNA: To create 

a standardized substrate for model building, a protocol 

for generating high-yield touch samples was employed. 

After washing hands and acclimating for 15 minutes, 

each volunteer vigorously rubbed a sterile 2.0 mL 

polypropylene tube between their thumb, index, and 

middle fingers for a continuous two-minute period. 

This protocol was designed to deposit sufficient 

material for robust model training, and it is 

acknowledged that this does not represent all forensic 

scenarios, particularly single, brief-touch events. All 

samples were assigned anonymous identifiers and 

processed. Aliquots not for immediate use were 

archived at -80°C. DNA extraction protocols were 

tailored to each sample type. An extraction blank 

(containing only reagents) was included with every 

batch of 12 samples to monitor for reagent and 

environmental contamination. Saliva: DNA was 

extracted from a 500 µL aliquot of the stabilized saliva 
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using the prepIT-L2P purification protocol (DNA 

Genotek) followed by isopropanol precipitation. 

Semen: DNA was extracted from a 20 µL aliquot of 

whole semen using the QIAamp DNA Investigator Kit 

(QIAGEN, Hilden, Germany). The protocol included 

incubation with Proteinase K and a final concentration 

of 0.8 M Dithiothreitol (DTT) to ensure complete lysis 

of sperm heads. Touch DNA: Cellular material was 

recovered from the handled tubes using the double-

swab technique. Two sterile cotton swabs were 

moistened with nuclease-free water, used to swab the 

entire tube surface, and then co-extracted using the 

QIAamp DNA Investigator Kit with 1 µg of carrier RNA 

added to enhance recovery from the low-template 

sample. 

DNA concentration was quantified using the Qubit 

4 Fluorometer with the Qubit dsDNA High Sensitivity 

Assay Kit (Thermo Fisher Scientific, USA). This 

fluorometric method was chosen for its accuracy and 

specificity for double-stranded DNA, which is critical 

for low-concentration samples. The assay's Limit of 

Quantification (LOQ) was established at 0.05 ng/µL. 

Purity was assessed using a NanoDrop 

spectrophotometer to ensure A260/280 ratios were 

within the 1.8-2.0 range. For each sample, up to 500 

ng of DNA (or the entire eluate for touch samples with 

<500 ng total yield) was subjected to bisulfite 

conversion using the EZ DNA Methylation-Gold™ Kit 

(Zymo Research, USA). To monitor the chemical 

conversion efficiency of each batch, a universal 

unmethylated control DNA (EpiTect Control DNA, 

QIAGEN) was co-processed. The methylation level of 

this control was subsequently measured by 

pyrosequencing; only batches where the control DNA 

showed >99.5% conversion (i.e., <0.5% residual 

methylation) were accepted for further analysis. 

Quantitative methylation analysis of the five target 

CpG sites was performed using bisulfite 

pyrosequencing. This method was selected for its 

ability to provide highly accurate, locus-specific 

quantification. Primer Design and Assay Details: PCR 

and sequencing primers were designed using 

PyroMark Assay Design Software 2.0. All primer 

sequences, target CpG sites (designated by their 

GRCh38 genomic coordinates), and expected amplicon 

sizes are detailed in Figure 1. One PCR primer for each 

assay was 5'-biotinylated for immobilization. PCR 

Amplification: Reactions were performed in 25 µL 

volumes containing 12.5 µL of PyroMark PCR Master 

Mix, 2 µL of template DNA, and primers. Non-template 

controls (NTCs) were included in every run. Thermal 

cycling consisted of a 15 min hold at 95°C, followed by 

45 cycles of 94°C for 30s, 56°C for 30s, and 72°C for 

30s, with a final 10 min extension at 72°C. 

Pyrosequencing and QC: The biotinylated PCR 

products were prepared and analyzed on a PyroMark 

Q48 Autoprep system. The specific nucleotide 

dispensation order for each assay is provided in figure 

1. The PyroMark Q48 software provides real-time 

quality control. A pyrogram was considered valid only 

if all internal controls passed and the peak heights for 

the target sequence exceeded a threshold of 25 

Relative Light Units (RLU). Samples were analyzed in 

duplicate, and the mean methylation value was used. 

If the difference between duplicates exceeded 5%, the 

analysis was repeated. 

All statistical analyses were conducted in R 

(v4.3.2). Model Development: Three separate age 

prediction models were developed using multiple 

linear regression (MLR). For each model (semen, 

saliva, touch DNA), chronological age was the 

dependent variable and the methylation percentages 

of the five markers were the independent predictor 

variables. Assessment of MLR Assumptions: Before 

finalizing the models, we tested for the core 

assumptions of MLR. Linearity was assessed via 

scatterplots of predictors against the outcome. 

Normality of residuals was checked using Q-Q plots. 

Homoscedasticity (constant variance of residuals) was 

evaluated by plotting residuals against predicted 

values. Multicollinearity Diagnostics: To ensure the 

stability of the model coefficients, we assessed 

multicollinearity by calculating the Variance Inflation 

Factor (VIF) for each predictor in the models. A VIF 

value >5 would indicate potentially problematic 

collinearity. Model Validation and Performance 

Metrics: The predictive performance of each model was 

assessed using a 10-fold cross-validation procedure. 

The dataset was randomly partitioned into 10 subsets. 

The model was trained on 9 subsets and tested on the 
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remaining one, with this process repeated 10 times 

until every subset had served as the test set. This 

method provides a more robust estimate of 

performance on unseen data than leave-one-out cross-

validation. The following metrics were calculated from 

the cross-validation results: Coefficient of 

Determination (R²): The proportion of variance in age 

explained by the model; Mean Absolute Deviation 

(MAD): The average absolute difference between 

predicted and chronological age, providing a direct 

measure of error in years; 95% Confidence Interval of 

the MAD: Calculated via bootstrapping to represent 

the uncertainty in the MAD estimate; 95% Prediction 

Interval: The average width of the interval within which 

the age of a new, single sample is predicted to fall with 

95% probability. 

 

  

 

 

Figure 1. Schematic of the targeted bisulfite pyrosequencing assay. 
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3. Results 

Figure 2 showed a comprehensive overview of the 

study's participant characteristics and the multi-stage 

quality control (QC) workflow for sample processing. 

The top panel visually elucidated the demographics of 

the volunteer group, which consisted of 150 male 

individuals. The age of the volunteers spanned from 18 

to 65 years, with a calculated mean age of 41.5 years 

(± 14.2 years). The age distribution chart further 

detailed the composition of the study group, indicating 

a balanced representation across different adult age 

brackets, which is essential for developing an 

unbiased predictive model. The bottom panel provided 

a clear, comparative narrative of the sample 

processing flow and attrition rates for the three 

distinct biological fluids analyzed. The robustness of 

semen and saliva as DNA sources was evident, with 

both sample types demonstrating a 100% success rate 

through the DNA quantification and pyrosequencing 

QC stages. This perfect success rate resulted in the full 

complement of 150 samples for both semen and saliva 

being carried forward for final model development. In 

stark contrast, the workflow for touch DNA highlighted 

the inherent challenges of analyzing trace evidence. 

Beginning with 150 initial samples, the first QC gate, 

DNA quantification, resulted in an attrition of eight 

samples that failed to yield sufficient DNA (<0.05 

ng/µL), leaving 142 samples (a 94.7% pass rate). Of 

these, a further three samples were excluded at the 

next stage due to low signal during pyrosequencing 

QC. This multi-step QC process culminated in a final, 

high-confidence dataset of 139 touch DNA samples 

used for model building. The figure effectively 

illustrated that while high-quality bulk samples like 

semen and saliva are highly reliable, a rigorous, 

sequential QC workflow is critical to ensure data 

integrity for low-template forensic samples. 

 
Figure 2. Study characteristics and sample quality control workflow. 
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Figure 3 showed a detailed, multi-part summary of 

the statistical analyses that form the foundation of the 

age prediction models. This figure provided a robust 

validation of the chosen markers and the regression 

methodology. Part A of the figure presented a heatmap 

that visually elucidated the strength of the Pearson 

correlation between the methylation level of each of the 

five genetic markers and the chronological age of the 

volunteers. The color intensity corresponded directly 

to the correlation coefficient, with darker shades 

indicating a stronger relationship. It was immediately 

apparent that the ELOVL2 marker was the most 

powerful single predictor, consistently showing the 

highest correlation across semen (r = 0.92), saliva (r = 

0.90), and touch DNA (r = 0.88). This visual analysis 

confirmed the suitability of the selected markers for 

building age prediction models. Part B displayed the 

results of a critical model diagnostic: the variance 

inflation factor (VIF) test, which assesses 

multicollinearity among predictor variables. The bar 

charts for each of the three models—semen, saliva, 

and touch DNA—clearly showed that the VIF for every 

marker was well below the common cautionary 

threshold of 5. The highest recorded VIF was only 2.5. 

This finding is scientifically important as it confirms 

that the predictor variables are not excessively 

correlated with each other, ensuring the stability and 

reliability of the regression model's coefficients. 

Finally, Part C provided a schematic example of a 

residuals versus fitted values plot for the saliva model. 

This diagnostic plot revealed a random, patternless 

scatter of data points around the central zero-line, 

with no discernible funneling or curvature. This visual 

evidence strongly supports the assumption of 

homoscedasticity, meaning the model's predictive 

error is consistent across the entire age range. Taken 

together, these three analyses provided strong 

statistical support for the validity and robustness of 

the developed age prediction models. 

 
 

 
Figure 3. Correlation analysis and statistical model diagnostics. 
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Figure 4 showed the final, tangible outputs of the 

study's statistical analysis: the development and 

composition of three distinct, tissue-specific age 

prediction models. The figure was logically organized 

into three sections, one for each biological fluid—

semen, saliva, and touch DNA—allowing for a direct 

and clear comparison of their mathematical 

structures. For each tissue type, the figure presented 

the complete multiple linear regression formula. These 

equations are the practical tools derived from the 

research, designed to convert the percentage of DNA 

methylation at five specific genetic loci into a predicted 

chronological age. The variation in the intercept values 

and the regression coefficients (β) across the three 

formulas immediately highlighted a key finding: a 

universal model is not appropriate. The unique 

mathematical structure of each model underscores the 

necessity of applying the correct formula to the 

corresponding biological evidence to ensure predictive 

accuracy. The graphical component of the figure, a 

series of horizontal bar charts, provided an intuitive 

visualization of each marker's relative contribution, or 

"weight," within each model. Across all three biological 

sources, the ELOVL2 marker was consistently the 

most influential predictor, demonstrated by its 

substantially larger coefficient (β = 0.66 in semen, 0.62 

in saliva, and 0.59 in touch DNA). This visually 

confirms its role as the primary driver of the age 

prediction. The charts also effectively illustrated the 

subtle but important differences in how the other four 

markers contribute to the models. For example, the 

relative influence of FHL2 was greater in the saliva 

model than in the semen model, while TRIM59 carried 

more weight in the touch DNA model. This 

visualization powerfully communicates that each 

model achieves its predictive accuracy by uniquely 

balancing the inputs from the five markers, reflecting 

the distinct epigenetic signatures of each tissue type. 

 

Figure 4. Development and composition of tissue-specific age prediction models. 

 

 

Figure 5 showed a comprehensive graphical and 

numerical summary of the predictive performance and 

accuracy for each of the three tissue-specific age 

estimation models. The figure was organized into three 

parallel panels, allowing for a direct comparison 

between the semen, saliva, and touch DNA models. 
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The scatterplots in each panel visually represented the 

correlation between the age predicted by the model 

and the actual chronological age of the volunteers. For 

the semen and saliva models, the data points formed 

a tight, linear cluster around the diagonal line of 

perfect prediction, graphically illustrating their high 

degree of accuracy. In contrast, the plot for the touch 

DNA model showed a visibly wider dispersion of data 

points, indicating a lower, though still significant, level 

of precision. The shaded bands, representing the 95% 

Prediction Interval, were narrowest for the semen 

model and widest for the touch DNA model, providing 

an intuitive visual guide to the confidence of a 

potential prediction. The numerical metrics below 

each plot quantified these visual observations. The 

semen and saliva models demonstrated exceptional 

performance, explaining 94% and 92% of the variance 

in age, respectively (R² = 0.94 and 0.92). Their 

accuracy was further highlighted by low Mean 

Absolute Deviation (MAD) values of just  3.19 years for 

semen and 3.55 years for saliva. The touch DNA 

model, while less precise, was still highly predictive, 

accounting for 85% of the age-related variance (R² = 

0.85). Its MAD was higher at 5.49 years, and its 95% 

Prediction Interval was substantially wider at ± 12.8 

years. This figure effectively summarized the study's 

central findings, providing both a qualitative and 

quantitative confirmation of the models' performance 

hierarchy and establishing the critical error metrics 

necessary for their application in forensic science. 

 

 

Figure 5. Model performance and accuracy assessment. 
 

 

4. Discussion 

This study was conceived to move beyond simple 

validation and to critically interrogate the performance 

of a targeted epigenetic clock across a spectrum of 

forensically relevant biological evidence.11 By 

implementing a methodologically rigorous workflow on 

a novel Southeast Asian cohort, we have developed 

three distinct, tissue-specific age prediction models 
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and, in doing so, have illuminated the profound 

biological factors that govern their precision. Our 

findings provide not only a practical tool for forensic 

investigators but also a deeper insight into the 

interplay between programmed aging, tissue biology, 

and the challenges of forensic analysis. The following 

discussion delves into the pathophysiological 

underpinnings of our findings and their direct 

implications for forensic science. The exceptional 

predictive power of our models, particularly the semen 

model, which accounts for 94% of the variance in 

chronological age, provides compelling evidence that 

the epigenetic clock is measuring a fundamental and 

highly regulated biological process.12 This is not a 

simple accumulation of random errors. The 

consistent, directional hypermethylation observed at 

our five marker loci suggests a deterministic program 

linked to development and homeostasis. This program 

is orchestrated by the complex enzymatic machinery 

that governs the methylome: the maintenance 

methyltransferase DNMT1, the de novo 

methyltransferases DNMT3A and DNMT3B, and the 

demethylating TET enzymes. The predictable increase 

in methylation at sites like ELOVL2 likely reflects a 

subtle, lifelong shift in this enzymatic balance, where 

de novo methylation activity at specific loci outpaces 

the protective effects of demethylation, leading to a 

steady, clock-like change.13 

The functional roles of the genes in our panel 

provide further insight into the nature of this clock. 

The panel's anchor, ELOVL2, is an elongase critical for 

producing long-chain polyunsaturated fatty acids 

(PUFAs) like docosahexaenoic acid (DHA).14 These 

PUFAs are integral to the structure and function of 

cellular membranes, especially in the brain and retina, 

and are precursors to anti-inflammatory signaling 

molecules. The progressive epigenetic silencing of 

ELOVL2 with age implies a fundamental shift in lipid 

metabolism, potentially leading to more rigid cell 

membranes and a more pro-inflammatory cellular 

environment—both classic hallmarks of the aging 

phenotype.15 Similarly, FHL2 is a crucial LIM-domain 

protein that acts as a molecular scaffold in numerous 

signaling pathways, including the MAPK and Wnt 

pathways, which regulate cell growth, differentiation, 

and stress responses.15 Its changing methylation 

status may reflect an age-related alteration in the cell's 

ability to respond to its environment. Our 

multicollinearity analysis reinforces this view. The low 

VIF values (<2.5) for all markers indicate that they 

provide independent predictive information. This 

suggests our model is not merely measuring one 

aspect of aging repeatedly. Instead, it is integrating 

distinct signals from lipid metabolism (ELOVL2), 

cellular signaling (FHL2), cell cycle control (TRIM59), 

and other pathways. The epigenetic clock is therefore 

a composite, multi-system measure of the aging 

process, which explains its remarkable robustness 

and accuracy.16 

The clear performance hierarchy we observed 

(Semen > Saliva > Touch DNA) is not a methodological 

artifact but a direct consequence of the unique biology 

and cellular dynamics of each tissue source. This 

finding has profound implications for the 

interpretation of forensic results. Semen: A State of 

Epigenetic Quiescence and Purity. The unparalleled 

precision of the semen model (MAD = 3.19 years) is 

rooted in the unique biology of its primary cellular 

component: spermatozoa.16 During the final stages of 

spermatogenesis, male germ cells undergo a profound 

and near-total epigenetic reprogramming, where most 

pre-existing methylation marks are erased and then 

re-established in a highly standardized pattern. This 

process effectively synchronizes the epigenetic clocks 

of billions of cells. Once mature, spermatozoa are 

terminally differentiated, transcriptionally silent, and 

non-mitotic. This cellular state of quiescence 

essentially "freezes" their methylome, protecting it 

from the mitotic drift and environmental insults that 

continuously affect somatic tissues. The result is a 

biological sample of exceptional purity and uniformity, 

providing a signal of the highest possible fidelity. The 

small fraction of somatic cells present in semen 

(leukocytes and epithelial cells from the prostate, 

epididymis, and seminal vesicles) also carries an age 

signal, but their contribution is overwhelmed by the 

vast and uniform population of sperm, resulting in a 

model with the lowest error and narrowest prediction 

interval. Saliva: A Dynamic and Heterogeneous but 

Reliable System. The saliva model's high accuracy 
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(MAD = 3.55 years) is particularly impressive given its 

complex and dynamic nature. Saliva is a 

heterogeneous mixture of buccal epithelial cells, which 

have a rapid turnover rate of 5-14 days, and a diverse 

population of leukocytes (neutrophils, lymphocytes, 

monocytes) shed from oral lymphoid tissue like the 

tonsils.17 These leukocyte populations have vastly 

different lifespans, from hours for neutrophils to years 

for memory T-cells. The fact that a single, robust 

model can be built from this cellular amalgam 

demonstrates that the fundamental aging program 

measured by our markers is conserved and runs in 

parallel across these different hematopoietic and 

epithelial lineages. The final methylation value is a 

weighted average of the epigenetic ages of these diverse 

cell types. The slightly higher error compared to semen 

logically follows from this heterogeneity; minor 

variations in oral health (such as subclinical gingivitis, 

which increases the shedding of short-lived 

neutrophils) or recent immune activity can subtly alter 

the cellular proportions between individuals, 

introducing a small amount of biological noise. Despite 

this, saliva stands as a highly reliable and accessible 

source for forensic age prediction. Touch DNA: A 

Complex Integration of Chronological, Environmental, 

and Technical Noise. The touch DNA model, with the 

highest MAD of 5.49 years, provides a fascinating 

window into the tripartite nature of trace evidence 

analysis. The observed error is not a failure of the 

method but an accurate reflection of three integrated 

sources of variance that must be understood for 

proper interpretation. Intrinsic Chronological Signal: 

The foundational signal comes from the intrinsic age 

of the keratinocytes from the stratum corneum, the 

primary cell type in touch DNA. Their methylation 

patterns were set when they were living, dividing cells 

in the basal layer of the epidermis. Extrinsic 

Environmental Insult: Skin is the body’s primary 

interface with the environment and is chronically 

exposed to insults, most notably ultraviolet (UV) 

radiation. UV radiation is a potent modulator of the 

skin epigenome. It induces DNA damage and has been 

shown to cause widespread, aberrant methylation 

changes that drive photoaging, a process distinct from 

chronological aging.17 This environmental "over-

printing" adds a significant layer of non-chronological, 

stochastic noise to the methylation signal, which is 

absent in protected internal fluids like semen. The 

cumulative lifetime sun exposure of an individual is 

therefore a significant, unmeasured confounder that 

contributes directly to the model's error. Analytical 

and Technical Variance: As our results show, touch 

DNA yields are orders of magnitude lower than those 

from semen or saliva. The analysis of picogram-level 

DNA pushes analytical methods to their stochastic 

limits.18 During the PCR amplification of bisulfite-

treated DNA, random fluctuations can lead to unequal 

amplification of methylated versus unmethylated 

alleles ("amplification bias"), introducing technical 

noise that is negligible in high-template samples. The 

final observed error of ±5.5 years is therefore a 

composite of true biological age, accumulated 

environmental damage, and the inherent limits of 

trace DNA analysis. It is critical to emphasize that our 

model was built using high-yield, standardized touch 

samples; its application to forensically realistic, low-

yield, single-touch casework samples from varied 

substrates would likely result in an even wider error 

margin. 

Our findings align with and build upon the existing 

body of international literature. The accuracy of our 

semen and saliva models is at the leading edge of what 

has been reported for targeted pyrosequencing assays. 

The MAD for our saliva model (3.55 years) represents 

an improvement over several recent European studies, 

which we attribute to our stringent methodological 

quality controls, particularly the batch-wise 

monitoring of bisulfite conversion efficiency, and the 

statistical robustness of our five-marker panel. The 

MAD for our touch DNA model (5.49 years) is highly 

consistent with the 4-6 year error margins reported by 

the few other groups who have ventured into this 

challenging sample type.18 This cross-population 

consistency strengthens the conclusion that these 

error margins are a true reflection of the biological and 

technical limits of the current technology, rather than 

a population-specific artifact. Our validation in an 

Indonesian cohort is a critical step, demonstrating the 

broad applicability of these markers beyond the 

predominantly European populations in which they 
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were first discovered and validated. The successful 

development of these models is not an end in itself but 

the beginning of a path toward responsible 

implementation.19 The transition from research to 

routine casework requires a carefully considered 

strategy. Forensic laboratories must perform their own 

internal validation studies to establish laboratory-

specific performance characteristics and standard 

operating procedures (SOPs). Crucially, these SOPs 

must include clear guidelines for the interpretation 

and reporting of results, emphasizing the probabilistic 

nature of the evidence. An age estimate must never be 

reported as a single, definitive number. To do so would 

be scientifically inaccurate and dangerously 

misleading.20  

 

 

Figure 6. Pathophysiological basis of tissue-specific age prediction accuracy. 

 

Figure 6 showed a detailed, comparative schematic 

that elucidated the pathophysiological basis for the 

observed differences in age prediction accuracy across 

the three tissue types. The figure provided a powerful 

visual narrative, directly linking the biological 

characteristics of each sample to its performance in 

the predictive models. The panel for semen illustrated 

a sample composed of a uniform population of 

spermatozoa. This visual was explained by the listed 

key biological factors: High Cellular Homogeneity, 

Epigenetic Stability, and High DNA Yield. The 

narrative conveyed by this section is one of purity and 

stability. The fact that semen is dominated by 

terminally differentiated, non-dividing cells minimizes 

the epigenetic "noise" that can arise from mitotic errors 

or cellular turnover. This biological simplicity, 

combined with abundant DNA, results in a very clean 

signal for the epigenetic clock. Consequently, the 

model's precision was rated as Very High, achieving 

the lowest Mean Absolute Deviation (MAD) of 3.19 

years. In the middle panel, saliva was depicted as a 

complex mixture of different cell types, including 

buccal epithelial cells and various leukocytes. The key 

factors listed here were Cellular Heterogeneity and 
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Variable Cell Lifespans, which introduce a level of 

biological noise not present in semen. Each cell type 

has a different turnover rate, meaning the final sample 

is an average of multiple cellular histories. Despite this 

complexity, the figure notes that saliva provides a 

Good DNA Yield, which allows for reliable analysis. 

This trade-off between cellular complexity and 

analytical robustness explains its performance 

outcome: a High level of precision with a still excellent 

MAD of 3.55 years.The final panel for touch DNA 

effectively visualized the significant challenges 

associated with trace evidence. The illustration 

showed shed keratinocytes on a surface, subject to 

external environmental insults represented by a sun 

icon. This was explained by the most challenging set 

of biological factors: Environmental Exposure like UV 

radiation which adds non-chronological noise, 

Cellular Stress, and a critically Low DNA Template. 

This combination creates the most difficult scenario 

for prediction. Environmental damage can alter the 

epigenetic marks, while the low amount of DNA 

increases the potential for technical errors and 

stochastic effects during analysis. The figure logically 

concluded that these factors lead to a Moderate level 

of precision, reflected in the highest MAD of 5.49 

years.Overall, the figure provided an elegant and 

scientifically informative summary, demonstrating 

that the predictive accuracy of the epigenetic clock is 

not an abstract statistical property but is 

fundamentally governed by the biology of the source 

tissue. 

5. Conclusion 

In this study, we have conducted a rigorous, multi-

faceted validation of a five-marker epigenetic panel for 

the purpose of age estimation. By developing three 

distinct, body-fluid-specific models for a novel 

Southeast Asian cohort, we have generated tools of 

immediate practical relevance. The models for semen 

(MAD = 3.19 years) and saliva (MAD = 3.55 years) are 

characterized by a high degree of accuracy and 

precision, rendering them suitable for generating high-

confidence investigative leads. The model for touch 

DNA (MAD = 5.49 years), while less precise, remains a 

powerful tool for intelligence gathering in cases where 

only trace evidence exists. More profoundly, our work 

illuminates the biological principles that dictate the 

performance of these models, demonstrating that 

predictive accuracy is a direct function of tissue-

specific cellular biology and epigenetic stability. By 

providing a transparent, methodologically detailed, 

and critically analyzed framework, this study offers a 

clear path forward for the responsible and effective 

implementation of epigenetic age estimation in the 

modern forensic science laboratory. 

 

6. References 

1. Fleckhaus J, Schneider PM. Novel multiplex 

strategy for DNA methylation-based age 

prediction from small amounts of DNA via 

pyrosequencing. Forensic Sci Int Genet. 2020; 

44(102189): 102189.  

2. Li L, Song F, Lang M, Hou J, Wang Z, Prinz M, 

et al. Methylation-based age prediction using 

pyrosequencing platform from seminal stains 

in Han Chinese males. J Forensic Sci. 2020; 

65(2): 610–9.  

3. Sukawutthiya P, Sathirapatya T, 

Vongpaisarnsin K. A minimal number CpGs of 

ELOVL2 gene for a chronological age 

estimation using pyrosequencing. Forensic 

Sci Int. 2021; 318(110631): 110631.  

4. Schwender K, Holländer O, Klopfleisch S, 

Eveslage M, Danzer MF, Pfeiffer H, et al. 

Development of two age estimation models for 

buccal swab samples based on 3 CpG sites 

analyzed with pyrosequencing and 

minisequencing. Forensic Sci Int Genet. 2021; 

53(102521): 102521.  

5. Ji Z, Xing Y, Li J, Feng X, Yang F, Zhu B, et 

al. Male-specific age prediction based on Y-

chromosome DNA methylation with blood 

using pyrosequencing. Forensic Sci Int Genet. 

2024; 71(103050): 103050.  

6. Zhao M, Cai M, Lei F, Yuan X, Liu Q, Fang Y, 

et al. AI-driven feature selection and 

epigenetic pattern analysis: a screening 

strategy of CpGs validated by pyrosequencing 

for body fluid identification. Forensic Sci Int. 

2025; 367(112339): 112339.  



 14 

7. Rana AK. Crime investigation through DNA 

methylation analysis: methods and 

applications in forensics. Egypt J Forensic 

Sci. 2018; 8(1).  

8. Maulani C, Auerkari EI. Age estimation using 

DNA methylation technique in forensics: a 

systematic review. Egypt J Forensic Sci. 2020; 

10(1).  

9. Xie B, Song F, Wang S, Zhang K, Li Y, Luo H. 

Exploring a multiplex DNA methylation-based 

SNP typing method for body fluids 

identification: as a preliminary report. 

Forensic Sci Int. 2020; 313(110329): 110329.  

10. Asparini RR, Perdanakusuma DS, Handajani 

R, Mahdani HB, Agustini SM. Difference in 

DNA methylation between cleft lip and cleft lip 

and palate. Indian J Forensic Med Toxicol. 

2021; 16(1): 1021–5.  

11. Seif E, Diab I, Ghobashy S, Hussein H, 

Ghitany S. Child maltreatment: Adolescents’ 

psychiatric sequels in the light of oxytocin 

receptor gene SNP rs2254298 and global DNA 

methylation: a case control study. Egypt J 

Forensic Sci Appl Toxicol. 2021; 21(1): 69–93.  

12. Dsbs S. Analysis of DNA methylation sites 

used for forensic age prediction and their 

correlation with human aging. Forensic Leg 

Investig Sci. 2021; 7(1): 1–8.  

13. Hamano Y, Watanabe K, Toyomane K, 

Morimoto C, Tamaki K, Akutsu T. Validation 

study of Bekaert’s age estimation model based 

on DNA methylation rate and development of 

novel models using Japanese blood samples. 

Jpn J Forensic Sci Technol. 2022; 27(1): 27–

38.  

14. Lucknuch T, Praihirunkit P. Evaluation of 

age-associated DNA methylation markers in 

colorectal cancer of Thai population. Forensic 

Sci Int Rep. 2022; 5(100265): 100265.  

15. El-Hossary NM, El-Desouky MA, Sabry GM, 

Omar MF, Ali MY, Elzayat MG, et al. A new 

insight of blood vs. buccal DNA methylation in 

the forensic identification of monozygotic 

triplets. Forensic Sci Int. 2024; 364(112247): 

112247.  

16. Mathew JA, Paul G, Jacob J, Kumar J, Dubey 

N, Philip NS. A new robust AI/ML based model 

for accurate forensic age estimation using 

DNA methylation markers. Forensic Sci Med 

Pathol. 2025.  

17. Lee JE, Cho S, So MH, Lee HY. DNA 

methylation-based semen age prediction 

using the markers identified in Koreans and 

Europeans. Forensic Sci Int Genet. 2025; 

77(103243): 103243.  

18. Walton JS. Fit in your genes: an introduction 

to genes and epigenetics for forensic 

practitioners. J Forens Pr. 2021; 23(3): 189–

200.  

19. Ullah RA, Ali A, Hussain N, Malik A. 

Applications of epigenetics in forensic 

investigations: a brief review. Biol Clin Sci Res 

J. 2021; 2021(1).  

20. Rezaei B, Ahadi M, Astaraki P. Epigenetics 

and forensics: Brightening the future. Curr 

Bioact Compd. 2024; 20(4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


