Nutrition and Stem Cell Integrity in Aging: Theory and Implications
Karolina Gunawan\(^1\)*, Aisyah Aulia\(^1\)

\(^1\)Faculty of Medicine, Universitas Tadulako, Palu, Indonesia

ABSTRACT

The aging process is a natural phenomenon that involves complex changes in cellular structure and function. The integrity of stem cells, which play a central role in tissue maintenance and regeneration, is affected by various factors, including nutrition. This abstract discusses the role of nutrition in influencing stem cell integrity during aging. Nutrition plays a key role in maintaining the health and normal function of stem cells. Antioxidants such as vitamins C, E, and selenium protect stem cells from oxidative stress and DNA damage, which can compromise regenerative abilities. Anti-inflammatory nutrients such as omega-3 fatty acids and polyphenols help reduce chronic inflammation that can damage the environment in which stem cells operate, maintaining conditions that support regeneration. Apart from that, nutrition also influences the length of telomeres, which protect chromosomes during replication. Folic acid, vitamin B12, and vitamin C play a role in DNA methylation around telomeres, which can influence the maintenance of telomere length and genetic integrity. Aging-related telomere shortening can trigger detrimental genetic changes and disrupt the capabilities of stem cells. A balanced diet, which includes proper nutritional intake, is an important strategy for maintaining healthy stem cells during aging. Reducing the consumption of nutrients that can trigger inflammation and oxidative stress and increasing intake of antioxidant and anti-inflammatory nutrients can help maintain stem cell integrity. Nutritional regulation also plays a role in regulating the signaling pathways that lead to stem cell differentiation, ensuring that stem cells can differentiate into the cell types necessary for tissue repair.

1. Introduction

Aging is a natural process experienced by all living creatures, including humans. During aging, the body undergoes various physical, biological, and molecular changes. One of the key factors involved in the aging process is stem cell integrity. Stem cells have the unique ability to regenerate and repair body tissue, maintain normal organ function, and maintain homeostasis. However, as we age, the integrity and function of stem cells can be affected by various factors, including the external environment, genetics, and nutrition. Nutrition plays an important role in maintaining the integrity of stem cells during the aging process. Proper nutrition supports stem cell function by providing energy, building blocks, and essential factors necessary for cell growth, differentiation, and regeneration. Various nutrients, such as vitamins, minerals, amino acids, and healthy fats, play a key role in maintaining healthy stem cells and preventing damage from oxidative stress.\(^1,2\)

However, changes in diet and nutritional habits with aging can often negatively impact stem cell integrity. Nutritional deficiencies, excessive calorie consumption, and an unbalanced diet can interfere with the ability of stem cells to function optimally. This can lead to decreased tissue regeneration, increased risk of aging-related diseases, and reduced quality of life. In this context, it is important to understand how nutrition can influence stem cell integrity in aging. Efforts to maintain and improve stem cell health
involve understanding specific nutritional needs, adopting a balanced diet, and avoiding factors that can damage stem cells, such as exposure to environmental toxins and unhealthy lifestyles.3,4

Oxidative stress and antioxidant theory

Oxidative stress occurs when there is an imbalance between the production of free radicals and the body's ability to neutralize them with molecules called antioxidants. Free radicals are molecules that have unpaired electrons, making them highly reactive. They can interact with other molecules in the cell, including proteins, lipids, and DNA, resulting in oxidative damage. Oxidative stress can be generated naturally during normal metabolic processes, but external factors such as radiation exposure, pollution, and unhealthy lifestyles can also increase the production of free radicals. Free radicals, such as hydroxyl radicals and superoxide radicals, can damage important cellular components such as DNA, proteins, and cell membranes. This damage can disrupt normal cell function, cause genetic changes, induce inflammation, and ultimately contribute to aging and age-related diseases such as heart disease, cancer, and neurodegenerative diseases.5,6

Antioxidants are molecules that can provide electrons to free radicals without being reactive. It helps to neutralize free radicals without causing further damage to other cellular components. Antioxidants help maintain a balance between free radical production and the body's defense system, which helps protect cells from oxidative damage. Antioxidant-rich nutrients have an important role in securing the integrity of stem cells and preventing damage that can reduce the ability of stem cells to regenerate tissue.7,8

Vitamin C (ascorbic acid) and vitamin E (tocopherol) are examples of important antioxidant nutrients. Vitamin C plays a role in protecting cells from oxidative damage by neutralizing free radicals in the water-soluble environment, while vitamin E focuses on protecting the lipid components in cell membranes. Selenium is a micronutrient that is an essential component of several antioxidant enzymes that work in the body. Understanding the importance of antioxidants in maintaining the integrity of stem cells can guide us in designing diets rich in these nutrients. Ensuring adequate intake of vitamin C, vitamin E, selenium, and other antioxidant nutrients can help protect stem cells from oxidative damage, thereby supporting regeneration and normal function of body tissues during the aging process.9

Inflammation and nutrition theory

Chronic inflammation, also known as low inflammation, is an inflammatory response that persists over a long period of time in the body. It is often considered an important contributing factor in the aging process and the pathogenesis of various age-related diseases. Chronic inflammation can damage tissue and disrupt the normal function of organs, including the microenvironment where stem cells reside. Chronic inflammation can disrupt the microenvironment in which stem cells operate. This can alter the molecular signals that regulate stem cell activity, causing a shift from tissue regeneration to an excessive inflammatory response. Over time, this can hinder the ability of stem cells to repair and regenerate body tissue.10

Omega-3 is a type of essential fatty acid found in fatty fish such as salmon, sardines, and mackerel, as well as in flax and chia seeds. Omega-3 fatty acids have anti-inflammatory properties that can inhibit the production of inflammatory molecules and regulate the inflammatory response. Polyphenols are natural compounds found in many fruits, vegetables, tea and red wine. They have antioxidant and anti-inflammatory properties, which can help fight chronic inflammation. Dietary fiber, especially soluble fiber found in fruits, vegetables, and cereals, has beneficial effects on gut health and the immune system. Fiber helps reduce inflammation by influencing gut microbiota and relieves excessive inflammatory responses.11

By consuming anti-inflammatory nutrients such as omega-3 fatty acids, polyphenols, and dietary fiber, we can help reduce chronic inflammatory responses that can disrupt the stem cell environment. By reducing inflammation, this environment becomes more supportive of cell regeneration and normal stem cell
function, which can ultimately maintain the body's health and vitality during the aging process. Understanding the impact of chronic inflammation on stem cells and the role of anti-inflammatory nutrition in mitigating the inflammatory response can provide insight into how we can utilize an appropriate diet to support stem cell health and prevent the negative impacts of aging. The combination of antioxidant and anti-inflammatory nutrients with a balanced diet and healthy lifestyle can help maintain stem cell integrity and support tissue regeneration, which is essential for healthy and sustainable aging.\(^{12}\)

Differentiation theory and nutrition

Differentiation is the process in which stem cells change themselves into more specialized and trained cell types, such as muscle tissue cells, bones, skin, and others. Nutrition plays a role in regulating the molecular signaling pathways that lead to this differentiation. Proper nutrition allows stem cells to receive the signals necessary to initiate the differentiation process efficiently and accurately. In the context of osteogenesis, namely the formation of bone tissue, the role of nutrition is very important. Vitamin D and retinol (vitamin A in active form) are two nutrients that have a significant impact on the differentiation process of osteogenesis.\(^{13,14}\)

Vitamin D plays an important role in regulating the absorption of calcium and phosphorus from the intestine, which are important nutrients for bone formation. In addition, vitamin D also affects the expression of genes involved in the differentiation of osteoblasts, namely the cells that build bone tissue. Vitamin D deficiency can hinder the body's ability to maintain a healthy bone structure. Retinol is an essential nutrient for the normal differentiation and growth of epithelial cells, including osteoblast cells. Vitamin A plays a role in regulating the expression of genes involved in the formation of bone tissue, as well as in maintaining the health and function of stem cells in a microenvironment that supports differentiation. It is important to pay attention to nutritional intake, such as vitamin D and retinol to maintain bone health and support for stem cells involved in the differentiation process. A diet that includes sources of these nutrients, such as fatty fish, egg yolks, green vegetables, and fortified dairy products, may help maintain the integrity and differentiation ability of stem cells.\(^{15}\)

Telomere theory and nutrition

Telomeres are repetitive DNA sequences located at the ends of chromosomes. Its function is to protect the important genetic code in chromosomes when cells replicate themselves. During each replication cycle, telomeres tend to shorten because the DNA molecule cannot be replicated completely to the end. Ultimately, when telomeres become too short, cells can no longer replicate properly. This is one of the factors associated with cellular aging and the potential development of age-related diseases. During each cell replication cycle, telomeres tend to shorten due to the imperfect DNA replication process. When telomeres reach a very short critical length, cells experience a phenomenon known as “senescence,” which is a state of quiescence and is unable to reproduce further. This can lead to a decrease in the regeneration and maintenance ability of body tissues. Telomere shortening can also trigger genetic damage and activate inflammatory responses that damage the microenvironment of cells and tissues. This process is believed to be one of the main factors in the development of age-related diseases such as heart disease, diabetes, neurodegenerative diseases, and cancer. Additionally, premature aging associated with telomere shortening may increase the risk of chronic diseases at younger stages of life.\(^{16}\)

Folic acid (Vitamin B9) and Vitamin B12 play a role in the methylation process, namely the addition of methyl groups to DNA. Proper methylation of DNA sequences near telomeres can help protect and maintain telomere length. Folic acid and vitamin B12 deficiencies can interfere with this process and contribute to faster telomere shortening. The methylation process involves adding methyl groups (CH3) to DNA and other components in cells. DNA methylation is one of the epigenetic mechanisms that regulates gene expression and cell function. In the context of telomeres, DNA methylation around the telomeric region can influence telomere length and chromosome stability. Folic acid and vitamin B12 are
essential nutrients that play a role in the methylation cycle. Folic acid provides the methyl group needed for the methylation reaction, while vitamin B12 is needed as a coenzyme in the process. The two work together to transfer methyl groups, which are then used to regulate gene expression and modify DNA structure. In the context of telomeres, proper methylation around the telomeric region can help protect and maintain telomere length. Inappropriate methylation can cause undesirable genetic changes and accelerate telomere shortening. Folic acid and vitamin B12 deficiencies can disrupt this methylation process and potentially affect telomere stability. Rapid telomere shortening may contribute to unhealthy aging and the development of age-related diseases. Therefore, maintaining adequate intake of folic acid and vitamin B12 through a balanced diet and, if necessary, recommended supplements can help maintain optimal methylation processes and genetic integrity.17

Metabolism and nutrition theory

Aging is often associated with metabolic changes, including decreased insulin response and increased insulin resistance. A balanced diet and certain nutrients, such as dietary fiber and healthy fats, can help maintain insulin sensitivity and metabolic regulation, which can support stem cell health. During the aging process, the body often experiences changes in insulin response and insulin sensitivity. Insulin response refers to how the body responds to the insulin hormone after eating to regulate blood glucose levels. With aging, cells may become more resistant to insulin, which can lead to increased blood glucose levels and the risk of type 2 diabetes. A balanced diet and proper nutritional intake can play an important role in maintaining insulin sensitivity and metabolic regulation during aging.18

Dietary fiber, especially soluble fiber found in fruits, vegetables, and cereals, can help control glucose absorption and slow the rise in blood sugar levels after eating. This can help maintain a stable insulin response and reduce the risk of insulin resistance. Healthy fats, such as omega-3 fatty acids found in fatty fish, avocados, and nuts, can help improve insulin sensitivity and reduce inflammation that can contribute to insulin resistance. Antioxidants, such as vitamins C and E, have the potential to help protect cells from inflammation and oxidative stress that can worsen insulin resistance. Proper regulation of metabolism and insulin sensitivity has a direct impact on stem cell health. Stem cells play a role in repairing and regenerating tissue, and if their metabolic environment is out of balance, this can influence the normal function of stem cells. By maintaining good metabolic regulation through a balanced diet and proper nutrition, we can provide an environment that supports the health of stem cells and their ability to contribute to tissue maintenance.19,20

2. Conclusion

A deeper understanding of the relationship between nutrition and stem cell integrity in aging has practical implications for designing dietary patterns that support long-term health. Different nutritional needs with age should be considered, including the consumption of macronutrients (carbohydrates, proteins, fats) and micronutrients (vitamins, minerals). Adopting a diet rich in antioxidants, dietary fiber, omega-3 fatty acids, and other essential nutrients can help maintain stem cell integrity, reduce inflammation, and support tissue regeneration.

3. References