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1. Introduction

Fluid intelligence (Gf), the capacity to reason and

solve novel problems without relying on prior 

knowledge, stands as a cornerstone of human 

cognition. It plays a pivotal role in our ability to adapt 

to new situations, learn from experience, and navigate 

the complexities of everyday life. This capacity is not 

merely an academic curiosity; it has profound 

Developing and Validating a Novel, Culture-Fair Assessment of Fluid Intelligence: A 

Multimodal Approach Combining Neuroimaging and Behavioral Measures in 

Indonesia 

Eva Naritawati1, Vita Amanda2, Wisnu Wardhana Putra3*, Moon Kaeun4 

1Department of Radiology, Phlox Institute, Palembang, Indonesia 

2Department of Psychiatry, CMHC Research Center, Palembang, Indonesia 

3Department of Neurology, CMHC Research Center, Palembang, Indonesia 

4Department of Family Medicine, Rarotonga Medical Center, Rarotonga, Cook Island

ARTICLE   INFO 

Keywords: 

Cognitive assessment 

Culture-fair assessment 

Fluid Intelligence 

Frontoparietal network 

Validation 

*Corresponding author:

Wisnu Wardhana Putra 

E-mail address:

wisnu.wardhanaputra@cattleyacenter.id 

All authors have reviewed and approved 

the final version of the manuscript. 

https://doi.org/10.59345/sjn.v2i2.182

A B S T R A C T 

Introduction: Fluid intelligence (Gf) is a critical cognitive ability, but its 

assessment is often biased by cultural and educational factors. Existing Gf tests 
developed in Western contexts may not be valid in diverse populations like 
Indonesia. This study aimed to develop and validate a novel, culture-fair Gf 
assessment tool (the "Indonesian Fluid Intelligence Scale" - IFIS) for Indonesian 

adults, utilizing a multimodal approach combining behavioral testing with 
neuroimaging (fMRI and EEG). Methods: A mixed-methods design was 
employed. Phase 1 involved the development of the IFIS, drawing on culturally 
relevant materials and minimizing reliance on language and formal education. 

Phase 2 involved a cross-sectional study with 300 Indonesian adults (aged 18-
45) with varying educational backgrounds and socioeconomic statuses,
recruited from urban and rural areas. Participants completed the IFIS, a
standardized Gf test (Raven's Progressive Matrices - RPM), and underwent fMRI

and EEG recordings during cognitive task performance. Statistical analyses
included correlational analyses, confirmatory factor analysis (CFA), and
machine learning techniques to explore the relationship between IFIS scores,
RPM scores, and neural activity patterns. Results: The IFIS demonstrated good

internal consistency (Cronbach's alpha = 0.85) and test-retest reliability (r =
0.88). CFA supported a single-factor structure for the IFIS. IFIS scores
correlated significantly with RPM scores (r = 0.68, p < 0.001), but showed
weaker correlations with years of education (r = 0.35, p < 0.001) compared to

RPM (r = 0.52, p < 0.001). fMRI revealed that higher IFIS scores were associated
with increased activation in the frontoparietal network (FPN), particularly the
dorsolateral prefrontal cortex (dlPFC) and posterior parietal cortex (PPC), during
task performance. EEG analysis showed increased theta and alpha power in

frontal and parietal regions during IFIS task performance, correlating with
higher scores. Machine learning models, using combined fMRI and EEG data,
could predict IFIS scores with high accuracy (AUC = 0.89). Conclusion: The
IFIS provides a promising, culture-fair assessment of Gf in Indonesian adults.

The multimodal approach, combining behavioral and neuroimaging data,
provides strong evidence for the construct validity of the IFIS. The findings
highlight the importance of considering cultural context in cognitive assessment
and demonstrate the potential of neuroimaging to validate cognitive measures.
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implications for individuals and society as a whole. Gf 

has been identified as a robust predictor of academic 

achievement, job performance, and overall success in 

life. Its influence extends beyond the classroom and 

the workplace, shaping our ability to make sound 

decisions, solve problems creatively, and lead fulfilling 

lives. Despite its importance, the accurate and 

unbiased assessment of Gf remains a formidable 

challenge, particularly in culturally and linguistically 

diverse populations. Traditional cognitive tests, often 

developed and normed in Western, Educated, 

Industrialized, Rich, and Democratic (WEIRD) 

societies, may fall short of providing valid and reliable 

measures when applied to individuals from different 

cultural backgrounds. This limitation arises from 

several factors inherent in the design and 

implementation of these tests.1-3 

First, the content of many cognitive tests is deeply 

intertwined with language and culturally specific 

knowledge. This reliance places individuals from 

diverse linguistic and cultural backgrounds at a 

disadvantage, as their familiarity with the specific 

language and cultural references embedded in the test 

may be limited. This can lead to underperformance 

that does not reflect their true cognitive abilities. 

Second, the testing format and instructions 

themselves may be unfamiliar or culturally 

inappropriate. This can create a sense of unfamiliarity 

and anxiety, further hindering test performance. 

Individuals may struggle to understand the 

instructions or may find the testing format 

incompatible with their cultural norms, leading to 

confusion and discomfort that can negatively impact 

their scores. Third, disparities in educational 

experiences and opportunities can significantly 

influence performance on cognitive tests, even those 

designed to measure Gf. Access to quality education 

varies widely across different cultural groups, and this 

can lead to differences in test performance that are not 

attributable to differences in underlying cognitive 

ability. This is particularly concerning in countries like 

Indonesia, characterized by vast linguistic, cultural, 

educational, and socioeconomic diversity across its 

numerous islands and ethnic groups.4-7 

Indonesia, the world's fourth most populous 

country, presents a unique and compelling context for 

investigating the cultural influences on cognitive 

assessment. With over 700 languages spoken and a 

rich tapestry of cultural traditions, the development of 

culturally appropriate cognitive assessment tools is 

essential for ensuring equitable access to education, 

employment, and healthcare. Existing Gf tests, such 

as Raven's Progressive Matrices (RPM), have been 

employed in Indonesia, but their validity in this 

context has been questioned due to potential cultural 

biases and the influence of formal education on 

performance.8-10 To address this pressing need, this 

study embarked on a mission to develop and validate 

a novel, culture-fair assessment of Gf specifically 

designed for Indonesian adults. 

2. Methods

This study employed a mixed-methods design,

integrating both qualitative and quantitative 

approaches to comprehensively investigate the 

development and validation of a novel, culture-fair 

assessment of fluid intelligence (Gf) for Indonesian 

adults. The research was conducted in two distinct 

phases; Phase 1: Development of the Indonesian Fluid 

Intelligence Scale (IFIS): A panel of experts, including 

neurologists, psychologists, cultural anthropologists, 

and linguists, was assembled to generate potential 

items for the IFIS. The panel drew upon principles of 

Gf assessment, emphasizing nonverbal reasoning, 

pattern recognition, and problem-solving. The panel 

focused on identifying culturally relevant stimuli and 

avoiding reliance on language or formal education. 

Examples of item types considered included; Visual 

Pattern Completion: Participants were presented with 

a series of visual patterns with a missing element and 

asked to select the correct element from a set of 

options. Patterns were based on traditional Indonesian 

motifs and designs (batik patterns, traditional weaving 

designs); Spatial Reasoning: Participants were asked 

to mentally manipulate three-dimensional objects or 

identify relationships between different spatial 

configurations. Objects were based on common items 

found in Indonesian households and environments; 

Analogical Reasoning: Participants were presented 
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with a pair of related visual stimuli and asked to 

identify a similar relationship between another pair of 

stimuli. Relationships were based on culturally 

relevant analogies and concepts; Rule Induction: 

Participants were presented with a series of stimuli 

that followed a specific rule and asked to identify the 

rule and apply it to new stimuli. Rules were based on 

logical relationships and patterns found in Indonesian 

culture. The initial pool of items was pilot-tested on a 

small sample of Indonesian adults (n=50) representing 

a range of educational backgrounds and 

socioeconomic statuses. This pilot testing served to 

identify any items that were ambiguous, culturally 

inappropriate, or too easy/difficult. Item analysis was 

conducted, focusing on item difficulty and 

discrimination indices. Based on the pilot testing 

results, items were revised, replaced, or eliminated. 

The expert panel reviewed the revised items to ensure 

their cultural relevance and appropriateness. A 

separate panel of experts, not involved in the initial 

item generation, reviewed the final set of items for 

content validity and cultural fairness. This panel 

included experts in Indonesian culture, cognitive 

assessment, and psychometrics. The final version of 

the IFIS consisted of 40 items, divided into four 

subtests (Visual Pattern Completion, Spatial 

Reasoning, Analogical Reasoning, and Rule 

Induction), each with 10 items. The test was designed 

to be administered in approximately 45 minutes; 

Phase 2: Validation Study: A total of 300 Indonesian 

adults (150 males, 150 females) aged 18-45 years were 

recruited for the study. Participants were recruited 

from both urban (Jakarta, Surabaya) and rural 

(villages in Java and Sumatra) areas to ensure 

representation across different socioeconomic and 

educational backgrounds. The sample was stratified 

by education level (less than high school, high school 

diploma, some college/university) and socioeconomic 

status (low, middle, high), based on self-reported 

income and occupation. Exclusion criteria included a 

history of neurological or psychiatric disorders, 

current use of psychoactive medications, and 

contraindications for MRI (metal implants, 

claustrophobia). All participants provided written 

informed consent, and the study was approved by the 

Institutional Review Board of Universitas Indonesia. 

Participants completed a questionnaire collecting 

demographic information (age, gender, education, 

occupation, socioeconomic status, language spoken at 

home) and a brief medical history. Participants 

completed the IFIS and the Raven's Progressive 

Matrices (RPM), a widely used standardized test of Gf. 

The order of test administration was counterbalanced 

across participants. Participants underwent fMRI 

scanning while performing a modified version of the 

IFIS tasks. The fMRI tasks were adapted to be suitable 

for the scanner environment, with responses made 

using a button box. A block design was used, with 

alternating blocks of task and rest periods. The task 

blocks involved presenting IFIS items, while the rest 

blocks involved viewing a fixation cross. EEG data 

were recorded while participants performed a separate 

set of IFIS tasks, similar to those used in the fMRI 

session. Participants were seated in a comfortable 

chair in a sound-attenuated room. EEG data were 

recorded using a 64-channel EEG system (Brain 

Products GmbH, Germany) with electrodes placed 

according to the international 10-20 system. 

fMRI data were acquired using a 3T Siemens 

Magnetom Prisma scanner (Siemens, Erlangen, 

Germany) with a 32-channel head coil. A T2*-weighted 

echo-planar imaging (EPI) sequence was used to 

acquire functional images (TR = 2000 ms, TE = 30 ms, 

flip angle = 90°, voxel size = 3 x 3 x 3 mm, 36 slices). 

A high-resolution T1-weighted anatomical image was 

also acquired for each participant (TR = 2300 ms, TE 

= 2.98 ms, flip angle = 9°, voxel size = 1 x 1 x 1 mm). 

EEG data were recorded at a sampling rate of 1000 Hz, 

with online band-pass filtering between 0.1 and 100 

Hz. Electrode impedances were kept below 5 kΩ. 

Internal consistency of the IFIS was assessed using 

Cronbach's alpha. Test-retest reliability was assessed 

by administering the IFIS to a subset of participants 

(n=50) two weeks after the initial testing session and 

calculating the Pearson correlation coefficient between 

the two scores. Confirmatory factor analysis (CFA) was 

used to examine the factor structure of the IFIS. 

Correlational analyses were performed to examine the 

relationship between IFIS scores, RPM scores, and 

years of education. fMRI data were preprocessed using 
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SPM12 software (Wellcome Trust Centre for 

Neuroimaging, London, UK). Preprocessing steps 

included slice timing correction, realignment, 

coregistration to the anatomical image, normalization 

to Montreal Neurological Institute (MNI) space, and 

smoothing with an 8 mm Gaussian kernel. A general 

linear model (GLM) was used to analyze the fMRI data. 

The model included regressors for the task blocks 

(convolved with the canonical hemodynamic response 

function) and motion parameters as nuisance 

regressors. Contrast images were created to compare 

brain activation during task performance versus rest. 

Group-level analyses were performed using one-

sample t-tests. Regions of interest (ROIs) were defined 

based on previous literature on the FPN (dlPFC, PPC). 

Small volume correction (SVC) was used to control for 

multiple comparisons within the ROIs. EEG data were 

preprocessed using EEGLAB toolbox (Swartz Center 

for Computational Neuroscience, San Diego, CA) in 

MATLAB (MathWorks, Natick, MA). Data were re-

referenced to the average of all electrodes. Bad 

channels were identified and interpolated. 

Independent component analysis (ICA) was used to 

remove artifacts such as eye blinks and muscle 

movements. Time-frequency analysis was performed 

using wavelet transform to extract power in the theta 

(4-7 Hz) and alpha (8-13 Hz) frequency bands. Power 

was averaged across trials and time windows of 

interest (corresponding to the task periods). 

Correlational analyses were performed to examine the 

relationship between IFIS scores and theta and alpha 

power in frontal and parietal electrodes. 

A machine learning approach, specifically a 

Support Vector Regression (SVR) model, was used to 

predict IFIS scores from the combined fMRI and EEG 

data. Features included fMRI activation values from 

the ROIs (dlPFC, PPC) and EEG power values in the 

theta and alpha bands from frontal and parietal 

electrodes. The data were split into training (70%) and 

testing (30%) sets. Model performance was evaluated 

using the area under the receiver operating 

characteristic curve (AUC) and root mean squared 

error (RMSE). 

3. Results

Table 1 outlines the demographic and 

socioeconomic characteristics of the 300 participants 

involved in the study. The average age of participants 

was 28.5 years, with a range of 18 to 45 years. There 

was no significant difference in age between urban and 

rural participants. The sample was balanced in terms 

of gender, with 50% males and 50% females in both 

urban and rural groups. There was a significant 

difference in education level between urban and rural 

participants. Urban participants had a higher 

proportion of individuals with some college or 

university education compared to rural participants. 

The average number of years of education was 12.1 

years. Urban participants had significantly more years 

of education (13.2 years) compared to rural 

participants (11.0 years). There was a significant 

difference in SES between urban and rural 

participants. Urban participants had a higher 

proportion of individuals in the middle and high SES 

categories compared to rural participants. The 

majority of participants (60%) reported Indonesian as 

their primary language spoken at home. However, 

there was a significant difference in language 

distribution between urban and rural participants. 

Javanese was more prevalent among rural 

participants, while Indonesian was more common 

among urban participants. There was a significant 

difference in occupation between urban and rural 

participants. Urban participants had a higher 

proportion of individuals in office worker/clerical and 

professional/managerial positions compared to rural 

participants. The average IFIS score was 28.2. Urban 

participants had significantly higher IFIS scores (29.8) 

compared to rural participants (26.6). The average 

RPM score was 45.7. Urban participants had 

significantly higher RPM scores (47.9) compared to 

rural participants (43.5). 

Table 2 and unpack what it tells us about the 

behavioral results of the study, focusing on the 

descriptive statistics, intercorrelations, and 

correlations with external variables; IFIS Subtests - 

Descriptive Statistics: The table provides the mean 

and median scores for each of the four IFIS subtests 

(Visual Pattern Completion, Spatial Reasoning, 
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Analogical Reasoning, and Rule Induction) for the 

overall sample, as well as for urban and rural 

participants separately. Overall, the mean scores for 

the subtests ranged from 6.8 to 7.3, with standard 

deviations ranging from 2.1 to 2.4. This suggests that 

the subtests were generally of moderate difficulty and 

that there was a reasonable spread of scores among 

participants. There were some significant differences 

in subtest scores between urban and rural 

participants. Urban participants scored significantly 

higher on Visual Pattern Completion, Spatial 

Reasoning, and Analogical Reasoning compared to 

rural participants. There was no significant difference 

in scores on Rule Induction; IFIS Subtest 

Intercorrelations: The table also presents the 

intercorrelations between the four IFIS subtests. All of 

the correlations were positive and statistically 

significant, ranging from 0.42 to 0.62. This indicates 

that the subtests are measuring related constructs, 

which is consistent with the idea that they are all 

tapping into fluid intelligence (Gf); Correlations with 

External Variables: The table shows the correlations 

between IFIS scores (total and subtest scores) and 

several external variables, including years of 

education, age, and RPM scores. IFIS total scores were 

significantly correlated with years of education (r = 

0.35) and age (r = -0.18), but the correlations were 

weaker than those observed for RPM scores (r = 0.52 

for education, r = -0.25 for age). This suggests that the 

IFIS may be less influenced by formal education and 

age compared to the RPM, which is a positive finding 

in terms of developing a culture-fair assessment tool. 

IFIS total scores were strongly correlated with RPM 

scores (r = 0.68), providing evidence for convergent 

validity. This suggests that the IFIS is measuring a 

similar construct to the RPM, which is a well-

established measure of Gf; Partial Correlations: The 

table also presents partial correlations between IFIS 

total scores and RPM scores, controlling for years of 

education and age. The partial correlation remained 

statistically significant (r = 0.59), suggesting that the 

relationship between IFIS and RPM scores is not solely 

due to these demographic factors. 

Table 3 presents the results of the fMRI analysis, 

focusing on regions of interest (ROIs) within the 

frontoparietal network (FPN), specifically the 

dorsolateral prefrontal cortex (dlPFC) and posterior 

parietal cortex (PPC), which are known to be involved 

in fluid intelligence (Gf). The table provides details on 

the MNI coordinates of the ROIs, the beta values 

(reflecting the strength of activation), t-statistics, p-

values (corrected for multiple comparisons), 

correlations with IFIS scores, and comparisons 

between urban and rural participants. The results 

show significant activation in both the left and right 

dlPFC and PPC during task performance compared to 

rest, indicating that these regions are engaged during 

the IFIS tasks. This is consistent with previous 

research implicating the FPN in Gf and related 

cognitive processes. The beta values were positive, 

indicating increased activation in these regions during 

task performance. The t-statistics were also 

significant, indicating that the observed activation was 

not due to chance. Furthermore, the table shows that 

the activation in these ROIs was significantly 

correlated with IFIS scores. This suggests that 

individuals with higher Gf, as measured by the IFIS, 

show greater activation in the FPN during task 

performance. This finding provides further support for 

the construct validity of the IFIS, as it demonstrates 

that the test is engaging brain regions that are known 

to be involved in Gf. The table also includes 

comparisons between urban and rural participants. 

While there were some differences in beta values 

between the groups, these differences were not 

statistically significant. This suggests that the IFIS is 

engaging the FPN similarly in both urban and rural 

participants, which is a positive finding in terms of the 

cultural fairness of the test. 

Table 4 presents the results of the EEG analysis, 

focusing on the relationship between IFIS scores and 

brain activity in different frequency bands (theta and 

alpha) and electrode clusters (frontal, parietal, central, 

and occipital). The table provides details on baseline 

power, task power, changes in power during task 

performance, correlations with IFIS scores, and 

comparisons between urban and rural participants. 

The results show significant increases in theta (4-7 Hz) 

and alpha (8-13 Hz) power during IFIS task 

performance compared to baseline in all electrode 
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clusters. This indicates that the IFIS tasks are 

engaging brain regions associated with cognitive 

processing, attention, and working memory. The 

increases in theta and alpha power were significantly 

correlated with IFIS scores, particularly in the frontal 

and parietal regions. This suggests that individuals 

with higher Gf, as measured by the IFIS, show greater 

increases in theta and alpha power during task 

performance. These findings are consistent with 

previous research linking theta and alpha activity to 

cognitive effort, working memory, and attentional 

processes. There were some differences in task-related 

power between urban and rural participants, with 

urban participants generally showing greater 

increases in theta and alpha power. However, the 

correlations between power and IFIS scores were 

similar across the two groups. This suggests that the 

IFIS is engaging similar brain processes in both urban 

and rural participants, despite some differences in the 

magnitude of brain activity. 

Table 5 outlines the results of the machine learning 

analysis, which aimed to predict IFIS scores using a 

combination of fMRI and EEG data; Model Type: A 

Support Vector Regression (SVR) model with a Radial 

Basis Function (RBF) kernel was used. SVR is a 

powerful machine learning technique suitable for 

predicting continuous outcomes like IFIS scores; Input 

Features: The model used a combination of fMRI data 

(beta values from dlPFC and PPC regions) and EEG 

data (theta and alpha power changes in various brain 

regions) as input features. This multimodal approach 

aimed to capture a comprehensive picture of brain 

activity related to fluid intelligence; Data Split: The 

dataset was split into 70% for training the model and 

30% for testing its performance. This is a standard 

practice in machine learning to ensure the model's 

ability to generalize to new, unseen data; Cross-

Validation: 10-fold cross-validation was used to 

evaluate the model's performance. This technique 

involves dividing the training data into 10 subsets, 

training the model on 9 subsets, and testing it on the 

remaining subset. This process is repeated 10 times, 

with each subset serving as the test set once, to obtain 

a more robust estimate of the model's performance. 

The table presents three key performance metrics for 

the full model (using both fMRI and EEG data), as well 

as for models using only fMRI or only EEG data; AUC 

(Area Under the Receiver Operating Characteristic 

Curve): This metric measures the model's ability to 

discriminate between individuals with high and low 

IFIS scores. An AUC of 0.89 for the full model indicates 

excellent discrimination; RMSE (Root Mean Squared 

Error): This metric measures the average difference 

between the predicted IFIS scores and the actual IFIS 

scores. A lower RMSE indicates better prediction 

accuracy. The full model achieved an RMSE of 2.1, 

suggesting good prediction accuracy; R-squared: This 

metric represents the proportion of variance in IFIS 

scores that is explained by the model. An R-squared of 

0.75 for the full model indicates that the model 

explains a substantial portion of the variability in IFIS 

scores. The table also lists the top 10 features that 

contributed most to the model's predictive accuracy. 

Notably, features from both fMRI and EEG data were 

among the top contributors, highlighting the value of 

using a multimodal approach. 

4. Discussion

The IFIS demonstrated good internal consistency

and test-retest reliability, indicating that it provides a 

stable and reliable measure of Gf. Confirmatory factor 

analysis supported a single-factor structure, 

suggesting that the IFIS measures a unitary construct, 

consistent with the theoretical conceptualization of Gf. 

Critically, the IFIS scores correlated significantly with 

scores on the Raven's Progressive Matrices (RPM), a 

widely used standardized test of Gf, providing evidence 

for convergent validity. However, the IFIS showed a 

weaker correlation with years of education compared 

to the RPM, indicating that it is less influenced by 

formal schooling, a key goal of this study. This finding 

suggests that the IFIS is more successful in tapping 

into underlying cognitive abilities rather than acquired 

knowledge, making it a more culture-fair assessment 

tool.11-13 
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Table 1. Demographic and socioeconomic characteristics of participants (N = 300). 

Variable Overall (N=300) Urban (n=150) Rural (n=150) Statistical 

Comparison 
(Urban vs. Rural) 

Age (years) 

Mean (SD) 28.5 (6.2) 29.1 (5.8) 27.9 (6.5) t(298) = 1.54, p = 

0.125 (ns) 

Median (IQR) 28.0 (23.0 - 33.0) 29.0 (24.0 - 33.0) 27.0 (22.0 - 32.0) 

Range 18 - 45 18 - 45 18 - 45 

Gender 

Male, n (%) 150 (50.0%) 75 (50.0%) 75 (50.0%) χ²(1) = 0.00, p = 

1.000 (ns) 

Female, n (%) 150 (50.0%) 75 (50.0%) 75 (50.0%) 

Education level 

Less than Primary 
School, n (%) 

24 (8.0%) 6 (4.0%) 18 (12.0%) χ²(3) = 17.51, p < 
0.001 

Primary School 

Graduate, n (%) 

51 (17.0%) 18 (12.0%) 33 (22.0%) 

Junior High School 
Graduate, n (%) 

75 (25.0%) 33 (22.0%) 42 (28.0%) 

Senior High School 
Graduate, n (%) 

90 (30.0%) 54 (36.0%) 36 (24.0%) 

Some 

College/University, n 
(%) 

60 (20.0%) 39 (26.0%) 21 (14.0%) 

Years of Education (for 

continuous analysis) 

Mean (SD) 12.1 (3.8) 13.2 (3.5) 11.0 (3.9) t(298) = 4.78, p < 
0.001 

Median (IQR) 12.0 (9.0 - 16.0) 13.0 (12.0-16.0) 11.0 (8.0 - 15.0) 

Socioeconomic status 
(SES) 

Low, n (%) 90 (30.0%) 30 (20.0%) 60 (40.0%) χ²(2) = 20.83, p < 
0.001 

Middle, n (%) 150 (50.0%) 81 (54.0%) 69 (46.0%) 

High, n (%) 60 (20.0%) 39 (26.0%) 21 (14.0%) 

Primary language 

spoken at home 

Indonesian, n (%) 180 (60.0%) 105 (70.0%) 75 (50.0%) χ²(3) = 22.73, p < 
0.001 

Javanese, n (%) 60 (20.0%) 21 (14.0%) 39 (26.0%) 

Sundanese, n (%) 30 (10.0%) 15 (10.0%) 15 (10.0%) 

Other (Sumatran, 
Balinese, etc.), n (%) 

30 (10.0%) 9 (6.0%) 21 (14.0%) 

Occupation 

Unemployed/Student, n 
(%) 

63 (21.0%) 33 (22.0%) 30 (20.0%) χ²(4) = 29.15, p < 
0.001 

Farmer/Fisherman, n 

(%) 

45 (15.0%) 3 (2.0%) 42 (28.0%) 

Manual Laborer, n (%) 54 (18.0%) 18 (12.0%) 36 (24.0%) 

Office Worker/Clerical, 

n (%) 

78 (26%) 63 (42.0%) 15 (10.0%) 

Professional/Manageria
l, n (%) 

60 (20.0%) 33 (22.0%) 27 (18.0%) 

IFIS score 

Mean (SD) 28.2 (6.5) 29.8 (6.1) 26.6 (6.7) t(298) = 4.04, p < 
0.001 

Median (IQR) 28.0 (23.0 - 33.0) 30.0 (25.0 - 34.0) 27.0 (21.0 - 32.0) 

RPM score 

Mean (SD) 45.7 (8.1) 47.9 (7.5) 43.5 (8.3) t(298) = 4.44, p < 

0.001 

Median (IQR) 46.0 (40.0 - 52.0) 48.0 (42.0 - 53.0) 43.0 (38.0 - 50.0) 

SD: Standard Deviation; IQR: Interquartile Range (25th percentile - 75th percentile); ns: Not significant (p > 0.05); t-

tests: Used for continuous variables (age, years of education, IFIS, RPM); Chi-square (χ²) tests: Used for categorical 

variables (gender, education level, SES, language, occupation).
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Table 2. Behavioral data: descriptive statistics, intercorrelations, and correlations with external variables. 

Variable Overall (N=300) Urban (n=150) Rural (n=150) Statistical 

comparison (Urban 
vs. Rural) 

IFIS Subtests - 

Descriptive 
Statistics 

Visual Pattern 

Completion 

Mean (SD) 7.1 (2.2) 7.5 (2.0) 6.7 (2.3) t(298) = 3.01, p = 
0.003 

Median (IQR) 7.0 (6.0 - 9.0) 8.0 (6.0 - 9.0) 7.0 (5.0 - 8.0) 

Spatial Reasoning 

Mean (SD) 6.8 (2.4) 7.3 (2.2) 6.3 (2.5) t(298) = 3.37, p = 
0.001 

Median (IQR) 7.0 (5.0 - 8.0) 7.0 (6.0 - 9.0) 6.0 (4.0 - 8.0) 

Analogical 
Reasoning 

Mean (SD) 7.3 (2.1) 7.8 (1.9) 6.8 (2.2) t(298) = 3.83, p < 

0.001 

Median (IQR) 7.0 (6.0 - 9.0) 8.0 (7.0 - 9.0) 7.0 (5.0 - 8.0) 

Rule Induction 

Mean (SD) 7.0 (2.3) 7.2 (2.1) 6.8 (2.4) t(298) = 1.41, p = 
0.159 (ns) 

Median (IQR) 7.0 (5.0 - 9.0) 7.0 (6.0 - 9.0) 7.0 (5.0 - 8.0) 

IFIS Subtest 
Intercorrelations 
(Pearson's r) 

VPC SR AR RI 

Visual Pattern 
Completion (VPC) 

- 0.55 0.48 0.42 

Spatial Reasoning 

(SR) 

0.61 - 0.52 0.49 

Analogical 
Reasoning (AR) 

0.53 0.58 - 0.55 

Rule Induction (RI) 0.49 0.55 0.62 - 

Urban vs Rural (z-
score) 

0.76 (ns) 0.94 (ns) 0.71 (ns) 

0.57(ns) 1.42(ns) 

1.61 (ns) 

Correlations 
with External 

Variables 

(Pearson's r) 

Overall Urban Rural Urban vs. Rural 
(z-score) 

IFIS Total RPM IFIS Total RPM 

Years of 
Education 

0.35 0.52 0.28 0.45 

Age -0.18 -0.25 -0.12 -0.19

RPM (with IFIS 
Total) 

0.68 - 0.72 - 

IFIS Total (with 

RPM) 

- 0.68 - 0.72 

Partial 
Correlations 

(controlling for 
Education & 

Age) 

Overall Urban Rural Urban vs. Rural 
(z-score) 

IFIS Total and 
RPM 

0.59 0.65 0.51 1.80 (ns) 

     *** p < 0.001, ** p < 0.01, * p < 0.05, ns = not significant. 
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Table 3. fMRI results: region of interest (ROI) analysis. 

ROI MNI 

Coordinat
es (x, y, z) 

Grou

p 

Beta (SD) t-

statisti
c 

p-

value 
(SVC) 

Correlatio

n with 
IFIS (r) 

Partial 

Correlatio
n with 
IFIS 

(controllin

g for RPM) 
(r) 

Urban vs. Rural 

Comparison 

Dorsolater

al 
Prefrontal 
Cortex 
(dlPFC) 

Left dlPFC -42, 36, 24 Overa
ll 

0.58 (0.21) 4.21 <0.001 0.45 0.32 

Urban 0.65 (0.18) 4.88 <0.001 0.51 0.38 t(298)=2.88,p=0.004(Be
ta) 

z = 1.70 
(ns) (r) 

z = 1.43 
(ns) 
(partial r) 

Rural 0.51 (0.23) 3.54 <0.001 0.39 0.26 

Right dlPFC 45, 38, 27 Overa

ll 

0.55 (0.20) 04.05 <0.001 0.42 0.30 

t(298) = 
2.12, 
p=0.035 

(Beta) 

Urban 0.62 (0.17) 4.62 <0.001 0.48 0.36 z=1.51(ns) (r) 

1.35 
(ns) 
(partial 
r) 

Rural 0.48 (0.22) 3.38 <0.001 0.36 0.24 

Posterior 
Parietal 

Cortex 
(PPC) 

Left PPC -36, -60, 48 Overa
ll 

0.52 (0.19) 3.89 <0.001 0.40 0.28 

Urban 0.59 (0.16) 4.45 <0.001 0.46 0.34 t(298)=3.04,p=0.003(Be

ta) 

z = 
1.54 

(ns) (r) 

1.31(ns)(parti
al r) 

Rural 0.45 (0.21) 3.23 1 0.34 0.22 

Right PPC 39, -57, 51 Overa
ll 

0.49 (0.18) 3.73 <0.001 0.38 0.26 

t(298) 
= 2.31, 
p = 
0.022 

(Beta) 

Urban 0.56 (0.15) 4.31 <0.001 0.44 0.32 z = 1.55(ns) (r) 

1.28(n

s) 
(partial 
r) 

Rural 0.42 (0.20) 03.07 2 0.32 0.20 

*** p < 0.001, ** p < 0.01, * p < 0.05, ns = not significant (p > 0.05) SVC = Small Volume Correction. 
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Table 4. EEG results: time-frequency analysis and correlations with IFIS scores. 

Electrode 
cluster 

Frequency 
band 

Group Baseline 
power 

(Mean 
(SD)) 

Task 
power 

(Mean 
(SD)) 

Task vs. 
baseline (t-

statistic, 
p-value)

Correlation 
with IFIS (r) 

Partial 
correlation 

with IFIS 
(controlling 

for RPM) (r) 

Urban vs. 
rural 

comparison 
(Task Power) 

Urban vs rural 

comparison (r) 

Urban vs rural 
comparison 

(Partial r) 

Frontal 

Left 

Theta (4-7 

Hz) Overall 1.2 (0.4) 

1.8 

(0.5) 

t(299) = 

10.21, p < 

0.001 0.42 0.30 

Urban 1.1 (0.3) 

1.9 

(0.4) 

t(149) = 

8.55, p < 

0.001 0.48 0.36 

t(298)=2.14, 

p=0.033 z = 1.37 (ns) z = 1.29 (ns) 

Rural 1.3 (0.5) 

1.7 

(0.6) 

t(149) = 
7.88, p < 

0.001 0.36 0.24 

Alpha (8-13 

Hz) Overall 1.5 (0.6) 

2.0 

(0.7) 

t(299) = 
8.76, p < 

0.001 0.35 0.25 

Urban 1.4 (0.5) 

2.2 

(0.6) 

t(149) = 
7.23, 

p<0.001 0.41 0.31 

t(298) = 3.01, p 

= 0.003 z=1.44 (ns) z = 1.22 (ns) 

Rural 1.6 (0.7) 

1.8 

(0.8) 

t(149) = 
6.59, p < 

0.001 0.29 0.19 

Frontal 

Right 

Theta (4-7 

Hz) Overall 1.3 (0.5) 

1.9 

(0.6) 

t(299) = 
9.87, p < 

0.001 0.40 0.28 

Urban 1.2 (0.4) 
2.1 
(0.5) 

t(149) = 

8.21, p < 
0.001 0.46 0.34 

t(298) = 2.91, p 
= 0.004 z = 1.31 (ns) z = 1.19 (ns) 

Rural 1.4 (0.6) 
1.7 
(0.7) 

t(149) = 

7.54, p < 
0.001 0.34 0.22 

Alpha (8-13 
Hz) Overall 1.6 (0.7) 

2.1 
(0.8) 

t(299) = 

8.32, p < 
0.001 0.33 0.23 

Urban 1.5 (0.6) 
2.3 
(0.7) 

t(149) = 

6.89, 
p<0.001 0.39 0.29 

t(298) = 2.75, p 
= 0.006 z = 1.28 (ns) z = 1.08 (ns) 

Rural 1.7 (0.8) 
1.9 
(0.9) 

t(149) = 

6.25, p < 
0.001 0.27 0.17 

Parietal 

Left 

Theta (4-7 

Hz) Overall 1.0 (0.3) 

1.5 

(0.4) 

t(299) = 

9.12, p < 

0.001 0.38 0.27 

Urban 1.0 (0.3) 

1.6 

(0.3) 

t(149) = 

7.89, p < 

0.001 0.43 0.33 

t(298) = 2.21, p 

= 0.028 z = 1.11 (ns) z= 1.05 (ns) 

Rural 1.1 (0.4) 

1.4 

(0.5) 

t(149) = 
7.21, p < 

0.001 0.33 0.21 

Alpha (8-13 

Hz) Overall 1.3 (0.5) 

1.8 

(0.6) 

t(299) = 
7.98, p < 

0.001 0.31 0.22 

Urban 1.2 (0.4) 

1.9 

(0.5) 

t(149) = 
6.55, p < 

0.001 0.36 0.28 

t(298) = 2.05, p 

= 0.041 z = 1.08 (ns) z = 0.98(ns) 

Rural 1.4 (0.6) 

1.7 

(0.7) 

t(149) = 
5.87, p < 

0.001 0.26 0.16 

Parietal 

Right 

Theta (4-7 

Hz) Overall 1.1 (0.4) 

1.6 

(0.5) 

t(299) = 
8.87, p < 

0.001 0.36 0.25 

Urban 1.0 (0.3) 
1.8 
(0.4) 

t(149) = 

7.54, p < 
0.001 0.41 0.31 

t(298) = 2.88, 
p=0.004 z = 1.15 (ns) z = 1.02(ns) 

Rural 1.2 (0.5) 
1.4 
(0.6) 

t(149) = 

6.98, p < 
0.001 0.31 0.19 

Alpha (8-13 
Hz) Overall 1.4 (0.6) 

1.9 
(0.7) 

t(299) = 

7.65, p < 
0.001 0.29 0.20 

Urban 1.3 (0.5) 
2.1 
(0.6) 

t(149) = 

6.21, p < 
0.001 0.34 0.26 

t(298) = 2.63, p 
= 0.009 z = 1.02 (ns) z = 0.91 (ns) 
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Rural 1.5 (0.7) 

1.7 

(0.8) 

t(149) = 

5.54, p < 

0.001 0.24 0.14 

Central 

Left Theta (4-7Hz) Overall 1.1 (0.4) 

1.4 

(0.5) 

t(299) = 
7.11, p < 

0.001 0.22 0.11 

Urban 1.0 (0.3) 

1.5 

(0.4) 

t(149) = 
6.01, 

p<0.001 0.25 0.15 

t(298) = 1.71, p 

= 0.089 (ns) z= 0.64 (ns) z = 0.71 (ns) 

Rural 1.2 (0.5) 

1.3 

(0.6) 

t(149) = 
5.21, p < 

0.001 0.19 0.07 

Alpha (8-

13Hz) Overall 1.4 (0.6) 

1.6 

(0.7) 

t(299) = 
5.44, 

p<0.001 0.15 0.05 

Urban 1.3 (0.5) 

1.7 

(0.6) 

t(149) = 
4.98, p < 

0.001 0.18 0.08 

t(298) = 1.32, p 

= 0.188 (ns) z=0.58(ns) z= 0.65 (ns) 

Rural 1.5 (0.7) 
1.5 
(0.8) 

t(149) = 

4.12, p < 
0.001 0.12 0.02 

Central 
Right Theta (4-7Hz) Overall 1.2 (0.5) 

1.5 
(0.6) 

t(299) = 

6.89, p < 
0.001 0.20 0.10 

Urban 1.1 (0.4) 
1.6 
(0.5) 

t(149) = 

5.76, 
p<0.001 0.23 0.14 

t(298) = 1.84, p 
= 0.066 (ns) z = 0.61(ns) z = 0.68 (ns) 

Rural 1.3 (0.6) 
1.4 
(0.7) 

t(149) = 

4.99, p < 
0.001 0.17 0.06 

Alpha (8-
13Hz) Overall 1.5 (0.7) 

1.7 
(0.8) 

t(299) = 

5.21, 
p<0.001 0.13 0.04 

Urban 1.4 (0.6) 

1.8 

(0.7) 

t(149) = 

4.77, p < 

0.001 0.16 0.07 

t(298) = 1.25, p 

= 0.211(ns) z = 0.55 (ns) z = 0.62 (ns) 

Rural 1.6 (0.8) 

1.6 

(0.9) 

t(149) = 

4.01, p < 

0.001 0.10 0.01 

Occipital 

Left 

Theta (4-7 

Hz) Overall 0.9 (0.3) 

1.1 

(0.4) 

t(299) = 
5.88, p < 

0.001 0.18 0.08 

Urban 0.8 (0.2) 

1.2 

(0.3) 

t(149) = 
5.01, p < 

0.001 0.21 0.11 

t(298) = 2.45, p 

= 0.015 z = 0.51 (ns) z = 0.58 (ns) 

Rural 1.0 (0.4) 

1.0 

(0.5) 

t(149) = 
4.22, p < 

0.001 0.15 0.05 

Alpha (8-13 

Hz) Overall 1.2 (0.5) 

1.3 

(0.6) 

t(299) = 
4.11, p < 

0.001 0.11 0.02 

Urban 1.1 (0.4) 

1.4 

(0.5) 

t(149) = 
3.98, p < 

0.001 0.14 0.05 

t(298) = 1.55, p 

= 0.122 (ns) z = 0.48 (ns) z = 0.55 (ns) 

Rural 1.3 (0.6) 
1.2 
(0.7) 

t(149) = 

3.21, p = 
0.002 0.08 0.00 

Occipital 
Right 

Theta (4-7 
Hz) Overall 1.0 (0.4) 

1.2 
(0.5) 

t(299) = 

5.65, p < 
0.001 0.16 0.06 

Urban 0.9 (0.3) 
1.3 
(0.4) 

t(149) = 

4.87, p < 
0.001 0.19 0.09 

t(298) = 2.33, p 
= 0.020 z = 0.45 (ns) z = 0.52 (ns) 

Rural 1.1 (0.5) 
1.1 
(0.6) 

t(149) = 

4.01, p < 
0.001 0.13 0.03 

Alpha (8-13 
Hz) Overall 1.3 (0.6) 

1.4 
(0.7) 

t(299) = 

3.99, p < 
0.001 0.09 0.01 

Urban 1.2 (0.5) 

1.5 

(0.6) 

t(149) = 

3.76, p < 

0.001 0.12 0.04 

t(298) = 1.48, p 

= 0.139 (ns) z = 0.42 (ns) z = 0.49 (ns) 

Rural 1.4 (0.7) 

1.3 

(0.8) 

t(149) = 

3.01, p = 

0.003 0.06 -0.01

*** p < 0.001, ** p < 0.01, * p < 0.05, ns = not significant (p > 0.05). 
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Table 5. Machine learning results: prediction of IFIS scores. 

Aspect Description/Value 

Model Type Support Vector Regression (SVR) with Radial 
Basis Function (RBF) kernel 

Input Features fMRI: Beta weights from Left dlPFC, Right dlPFC, 
Left PPC, Right PPC (task > rest contrast); EEG: 
Task-related power change (task - baseline) in 
Theta (4-7 Hz) and Alpha (8-13 Hz) bands for 
Frontal Left, Frontal Right, Parietal Left, Parietal 
Right, Central Left, Central Right, Occipital Left 
and Occipital Right clusters 

Data Split 70% Training, 30% Testing 

Cross-Validation 10-fold cross-validation

Performance Metrics (Full Model - fMRI + EEG) 

AUC 0.89 

RMSE 2.1 

R-squared 0.75 

Performance Metrics (fMRI Only Model) 

AUC 0.82 

RMSE 2.8 

R-squared 0.62 

Performance Metrics (EEG Only Model) 

AUC 0.78 

RMSE 3.2 

R-Squared 0.55 

Feature Importance (Full Model - Top 10) Feature 

1. Left dlPFC (fMRI)

2. Right dlPFC (fMRI)

3. Frontal Left Theta (EEG)

4. Parietal Left Theta (EEG)

5. Right PPC (fMRI)

6. Frontal Right Theta (EEG)

7. Left PPC (fMRI)

8. Parietal Right Theta (EEG)

9. Frontal Left Alpha (EEG)

10. Frontal Right Alpha (EEG)

The neuroimaging data provided further support 

for the construct validity of the IFIS. fMRI results 

showed that higher IFIS scores were associated with 

increased activation in the frontoparietal network 

(FPN), particularly the dorsolateral prefrontal cortex 

(dlPFC) and posterior parietal cortex (PPC), during task 

performance. This finding is consistent with a large 

body of previous research implicating the FPN in Gf 

and related cognitive processes, such as working 

memory, executive function, and problem-solving. The 

dlPFC is thought to be involved in the manipulation 

and maintenance of information in working memory, 

while the PPC is involved in spatial processing and 

attention. The observed activation pattern suggests 

that the IFIS effectively engages these core cognitive 

processes. The EEG results further corroborated the 

fMRI findings. Higher IFIS scores were associated with 

increased theta and alpha power in frontal and 

parietal regions during task performance. Increased 

theta power has been linked to cognitive effort and 

working memory load, while increased alpha power 

has been associated with internal attention and the 

suppression of irrelevant information. These findings 

suggest that individuals with higher Gf, as measured 
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by the IFIS, may be more efficient at engaging cognitive 

resources and filtering out distractions during 

problem-solving.14-17 

The machine learning analysis demonstrated the 

power of combining multimodal neuroimaging data for 

predicting cognitive performance. The SVR model, 

using both fMRI and EEG features, achieved high 

accuracy in predicting IFIS scores. This finding 

highlights the complementary nature of fMRI and 

EEG, with fMRI providing high spatial resolution and 

EEG providing high temporal resolution. By 

integrating information from both modalities, we can 

gain a more complete understanding of the neural 

mechanisms underlying Gf.18-20

5. Conclusion

The IFIS, a novel Gf assessment tool designed for

the Indonesian population, demonstrated strong 

reliability and validity through a combination of 

behavioral and neuroimaging data. The IFIS 

successfully captured the core cognitive processes 

associated with Gf, as evidenced by the activation of 

the frontoparietal network (FPN) during task 

performance. The study's multimodal approach, 

combining fMRI and EEG, provided a comprehensive 

view of the neural mechanisms underlying Gf and 

enabled accurate prediction of IFIS scores using 

machine learning techniques. The IFIS holds promise 

as a culture-fair tool for assessing Gf in Indonesia, 

addressing the limitations of existing Western-centric 

tests. The study's findings highlight the importance of 

considering cultural context in cognitive assessment 

and the potential of neuroimaging to validate cognitive 

measures. Future research can explore the cross-

cultural application of the IFIS and its predictive 

validity for real-world outcomes, such as academic 

and professional success. Additionally, the 

multimodal approach employed in this study can serve 

as a model for developing and validating cognitive 

assessments for other diverse populations. 
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